Machine Learning for Data Science (CS4786) Lecture 10

PCA and Random Projections

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2017fa/

PRINCIPAL COMPONENT ANALYsIS

Maximize Spread

Minimize Reconstruction
 Error

Demo

Orthonormal Projections

- Think of $\mathbf{w}_{1}, \ldots, \mathbf{w}_{K}$ as coordinate system for PCA (in a K dimensional subspace)
- y values provide coefficients in this system
- Without loss of generality, $\mathbf{w}_{1}, \ldots, \mathbf{w}_{K}$ can be orthonormal, i.e. $\mathbf{w}_{i} \perp \mathbf{w}_{j} \&\left\|\mathbf{w}_{i}\right\|=1$.

$$
\begin{aligned}
& \left\|\mathbf{w}_{i}\right\|_{2}^{2}=\sum_{k=1}^{d} \mathbf{w}_{i}[k]^{2} \\
& \mathbf{w}_{j} \Rightarrow \sum_{k=1}^{d} \mathbf{w}_{i}[k] \mathbf{w}_{j}[k]=0
\end{aligned}
$$

Centering Data

Compressing these data points...

CENTERING DATA

... is same as compressing these.

Orthonormal Projections

- (Centered) Data-points as linear combination of some orthonormal basis, i.e.

$$
\mathbf{x}_{t}=\mu+\sum_{j=1}^{d} \mathbf{y}_{t}[j] \mathbf{w}_{j}
$$

where $\mathbf{w}_{1}, \ldots, \mathbf{w}_{d} \in \mathbb{R}^{d}$ are the orthonormal basis and $\mu=\frac{1}{n} \sum_{t=1}^{n} x_{t}$.

- Represent data as linear combination of just K orthonormal basis,

$$
\hat{\mathbf{x}}_{t}=\mu+\sum_{j=1}^{K} \mathbf{y}_{t}[j] \mathbf{w}_{j}
$$

PCA: Minimizing Reconstruction Error

- Goal: find the basis that minimizes reconstruction error,

$$
\begin{aligned}
\sum_{t=1}^{n}\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|_{2}^{2} & =\sum_{t=1}^{n}\left\|\sum_{j=1}^{K} \mathbf{y}_{t}[j] \mathbf{w}_{j}+\mu-\mathbf{x}_{t}\right\|_{2}^{2} \\
& =\sum_{t=1}^{n}\left\|\sum_{j=1}^{K} \mathbf{y}_{t}[j] \mathbf{w}_{j}+\mu-\sum_{j=1}^{d} \mathbf{y}_{t}[j] \mathbf{w}_{j}-\mu\right\|_{2}^{2} \\
& =\sum_{t=1}^{n}\left\|\sum_{j=K+1}^{d} \mathbf{y}_{t}[j] \mathbf{w}_{j}\right\|_{2}^{2} \quad\left(\text { but }\|a+b\|_{2}^{2}=\|a\|_{2}^{2}+\|b\|_{2}^{2}+2 a^{\top} b\right) \\
& =\sum_{t=1}^{n}\left(\sum_{j=K+1}^{d} \mathbf{y}_{t}[j]^{2}\left\|\mathbf{w}_{j}\right\|_{2}^{2}+2 \sum_{j=K+1}^{d} \sum_{i=j+1}^{d} \mathbf{y}_{t}[j] \mathbf{y}_{t}[i] \mathbf{w}_{j}^{\top} \mathbf{w}_{i}\right) \\
& \left.=\sum_{t=1}^{n} \sum_{j=k+1}^{d} \mathbf{y}_{t}[j]^{2}\left\|\mathbf{w}_{j}\right\|_{2}^{2} \quad \text { (last step because } \mathbf{w}_{j} \perp \mathbf{w}_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{n} \sum_{t=1}^{n}\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|_{2}^{2} & =\frac{1}{n} \sum_{t=1}^{n} \sum_{j=k+1}^{d} \mathbf{y}_{t}[j]^{2}\left\|\mathbf{w}_{j}\right\|_{2}^{2} \quad\left(\text { but }\left\|\mathbf{w}_{j}\right\|=1\right) \\
& =\frac{1}{n} \sum_{t=1}^{n} \sum_{j=k+1}^{d} \mathbf{y}_{t}[j]^{2} \quad\left(\text { now } \mathbf{y}_{j}=\mathbf{w}_{j}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right) \\
& =\frac{1}{n} \sum_{t=1}^{n} \sum_{j=k+1}^{d}\left(\mathbf{w}_{j}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right)^{2} \\
& =\frac{1}{n} \sum_{t=1}^{n} \sum_{j=k+1}^{d} \mathbf{w}_{j}^{\top}\left(\mathbf{x}_{t}-\mu\right)\left(\mathbf{x}_{t}-\mu\right)^{\top} \mathbf{w}_{j} \\
& =\sum_{j=k+1}^{d} \mathbf{w}_{j}^{\top} \Sigma \mathbf{w}_{j}
\end{aligned}
$$

PCA: Minimizing Reconstruction Error

Minimize w.r.t. $\mathbf{w}_{1}, \ldots, \mathbf{w}_{K}$'s that are orthonormal,

$$
\underset{\forall j,\left\|\mathbf{w}_{j}\right\|_{2}=1}{\operatorname{argmin}} \sum_{j=k+1}^{d} \mathbf{w}_{j}^{\top} \Sigma \mathbf{w}_{j}
$$

- Solution, (discard) $\mathbf{w}_{K+1}, \ldots, \mathbf{w}_{d}$ are bottom $d-K$ eigenvectors
- Hence $\mathbf{w}_{1}, \ldots, \mathbf{w}_{K}$ are the top K eigenvectors

PRINCIPAL COMPONENT ANALYsIS

RECONSTRUCTION

$\hat{x}=\gamma \times \underline{\underline{W}+n}$

WHEN $d \gg n$

- If $d \gg n$ then Σ is large
- But we only need top K eigen vectors.
- Idea: use SVD

$$
X-\mu=U D V^{\top}
$$

$$
\begin{aligned}
& \mathrm{V}^{\top} \mathrm{V}=\mathrm{I} \\
& \mathrm{U}^{\top} \mathrm{U}=\mathrm{I}
\end{aligned}
$$

Then note that, $\Sigma=(X-\mu)^{\top}(X-\mu)=V D^{2} V$

- Hence, matrix V is the same as matrix W got from eigen decomposition of Σ, eigenvalues are diagonal elements of D^{2}
- Alternative algorithm:

$$
[U, V]=\operatorname{SVD}(X-\mu, K) \quad W=V
$$

: : ; : $:():():()$
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
$\odot \odot \odot \odot O \odot O$

The Tall, the Fat and the Ugly

The Tall, the Fat And the Ugly

THE TALL, THE FAT AND the Ugly

- d and n so large we can't even store in memory
- Only have time to be linear in $\operatorname{size}(X)=n \times d$

I there any hope?

PICK A Random W

$$
Y=X \times\left[\begin{array}{ccc}
+1 & \ldots & -1 \\
-1 & \ldots & +1 \\
+1 & \ldots & -1 \\
& \cdot & \\
& \cdot & \\
+1 & \ldots & -1
\end{array}\right] d / \sqrt{K}
$$

Random Projection

- What does "it works" even mean?

Random Projection

- What does "it works" even mean?

Distances between all pairs of data-points in low dim. projection is roughly the same as their distances in the high dim. space.

That is, when K is "large enough", with "high probability", for all pairs of data points $i, j \in\{1, \ldots, n\}$,

$$
(1-\epsilon)\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|_{2} \leq\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|_{2}
$$

Why should Random Projections even work?!

Say $K=1$. Consider any vector $\tilde{\mathbf{x}} \in \mathbb{R}^{d}$ and let $\tilde{\mathbf{y}}=\tilde{\mathbf{x}} W$. Note that

$$
\begin{aligned}
\tilde{\mathbf{y}}^{2} & =\left(\sum_{i=1}^{d} W[i, 1] \cdot \tilde{\mathbf{x}}[i]\right)^{2} \\
& =\sum_{i=1}^{d}(W[i, 1] \cdot \tilde{\mathbf{x}}[i])^{2}+2 \sum_{i^{\prime}>i}(W[i, 1] \cdot \tilde{\mathbf{x}}[i])\left(W\left[i^{\prime}, 1\right] \cdot \tilde{\mathbf{x}}\left[i^{\prime}\right]\right) \\
& =\sum_{i=1}^{d} W^{2}[i, 1] \tilde{\mathbf{x}}^{2}[i]+\sum_{i^{\prime}>i}\left(W[i, 1] \cdot W\left[i^{\prime}, 1\right]\right) \cdot\left(\tilde{\mathbf{x}}[i] \cdot \tilde{\mathbf{x}}\left[i^{\prime}\right]\right)
\end{aligned}
$$

However $W^{2}[i, 1]=1 / K=1$ when $K=1$

$$
=\sum_{i=1}^{d} \tilde{\mathbf{x}}^{2}[i]+\sum_{i^{\prime}>i}\left(W[i, 1] \cdot W\left[i^{\prime}, 1\right]\right) \cdot\left(\tilde{\mathbf{x}}[i] \cdot \tilde{\mathbf{x}}\left[i^{\prime}\right]\right)
$$

Why should Random Projections even work?!

Hence,

$$
\mathbb{E}\left[\tilde{\mathbf{y}}^{2}\right]=\sum_{i=1}^{d} \tilde{\mathbf{x}}^{2}[i]+\sum_{i^{\prime}>i} \mathbb{E}\left[W[i, 1] \cdot W\left[i^{\prime}, 1\right]\right] \cdot\left(\tilde{\mathbf{x}}[i] \cdot \tilde{\mathbf{x}}\left[i^{\prime}\right]\right)
$$

However $W[i, 1]$ and $W\left[i^{\prime}, 1\right]$ are independent and so

$$
\mathbb{E}\left[W[i, 1] \cdot W\left[i^{\prime}, 1\right]\right]=\mathbb{E}[W[i, 1]] \cdot \mathbb{E}\left[W\left[i^{\prime}, 1\right]\right]=0
$$

Using this we conclude that

$$
\mathbb{E}\left[\tilde{\mathbf{y}}^{2}\right]=\sum_{i=1}^{d} \tilde{\mathbf{x}}^{2}[i]=\|\tilde{\mathbf{x}}\|^{2}
$$

Why should Random Projections even work?!

Hence,

$$
\mathbb{E}\left[|\tilde{\mathbf{y}}|^{2}\right]=\|\tilde{\mathbf{x}}\|_{2}^{2}
$$

If we let $\tilde{\mathbf{x}}=\mathbf{x}_{s}-\mathbf{x}_{t}$ then

$$
\tilde{\mathbf{y}}=\tilde{\mathbf{x}} W=\mathbf{x}_{s} W-\mathbf{x}_{t} W=\mathbf{y}_{s}-\mathbf{y}_{t}
$$

Hence for any $s, t \in\{1, \ldots, n\}$,

$$
\mathbb{E}\left[\left|\mathbf{y}_{s}-\mathbf{y}_{t}\right|^{2}\right]=\left\|\mathbf{x}_{s}-\mathbf{x}_{t}\right\|_{2}^{2}
$$

Lets try this in Matlab ...

Why should Random Projections even work?!

- Setting K large is like getting K samples.
- Specifically since we take W to be random signs normalized by \sqrt{K}, for each $j \in[K]$, for any $\tilde{\mathbf{x}}$ if $\tilde{\mathbf{y}}=\tilde{\mathbf{x}} W$, then

$$
\mathbb{E}\left[\tilde{\mathbf{y}}^{2}[j]\right]=\|\tilde{\mathbf{x}}\|_{2}^{2} / K
$$

Hence we can conclude that

$$
\mathbb{E}\left[\sum_{j=1}^{K} \tilde{\mathbf{y}}^{2}[j]\right]=\sum_{j=1}^{K} \mathbb{E}\left[\tilde{\mathbf{y}}^{2}[j]\right]=\sum_{j=1}^{K} \frac{\|\tilde{\mathbf{x}}\|_{2}^{2}}{K}=\|\tilde{\mathbf{x}}\|_{2}^{2}
$$

This is like taking an average of K independent measurements whose expectations are $\|\tilde{\mathbf{x}}\|_{2}^{2}$

Why should Random Projections even work?!

For large K, not only true in expectation but also with high probability
For any $\epsilon>0$, if $K \approx \log (n / \delta) / \epsilon^{2}$, with probability $1-\delta$ over draw of W, for all pairs of data points $i, j \in\{1, \ldots, n\}$,

$$
(1-\epsilon)\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|_{2}^{2} \leq\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|_{2}^{2}
$$

Lets try on Matlab ...

This is called the Johnson-Lindenstrauss lemma or JL lemma for short.

WHY is THis so Ridiculously Magical?
n= 1000

$$
d=1000
$$

WHY is THis so Ridiculously Magical?

$\mathrm{n}=$ 1000

$$
d=1000
$$

If we take $K=69.1 / \epsilon^{2}$, with probability 0.99 distances are preserved to accuracy ϵ

WHY is THis so Ridiculously Magical?

$$
\begin{gathered}
n= \\
1000
\end{gathered}
$$

$$
d=10000
$$

If we take $K=69.1 / \epsilon^{2}$, with probability 0.99 distances are preserved to accuracy ϵ

WHY is THis so Ridiculously Magical?

n=
1000

$$
d=1000000
$$

If we take $K=69.1 / \epsilon^{2}$, with probability
0.99 distances are preserved to accuracy ϵ

