
Machine Learning for Data Science (CS4786)
Lecture 10

PCA and Random Projections

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2017fa/

PRINCIPAL COMPONENT ANALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data × Top Keigenvectors

Reconstruction = Projection × Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.

⌃ =cov X
 !

1.

eigs= ⌃ ,K()W2.

3. Y = W⇥X�µ

Maximize Spread Minimize Reconstruction
Error

Demo

2

ORTHONORMAL PROJECTIONS

Think of w1, . . . ,wK

as coordinate system for PCA (in a K

dimensional subspace)

y values provide coefficients in this system

Without loss of generality, w1, . . . ,wK

can be orthonormal, i.e.
w

i

⊥w

j

& �w
i

� = 1.

Reconstruction:

x̂

t

= K�
j=1

y

t

[j]w
j

If we take all w1, . . . ,w
d

, then x

t

= ∑d

j=1 y

t

[j]w
j

. To reduce
dimensionality we only consider first K vectors of the basis

kwik22 =
dX

k=1

wi[k]
2

wi ? wj)
dX

k=1

wi[k]wj [k] = 0

CENTERING DATA

Compressing these data points…

-1.5 -1 -0.5 0 0.5 1 1.5
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0

CENTERING DATA

… is same as compressing these.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0

ORTHONORMAL PROJECTIONS

(Centered) Data-points as linear combination of some
orthonormal basis, i.e.

x

t

= µ + d�
j=1

y

t

[j]w
j

where w1, . . . ,w
d

∈ Rd are the orthonormal basis and µ = 1
n

∑n

t=1 x

t

.
Represent data as linear combination of just K orthonormal basis,

x̂

t

= µ + K�
j=1

y

t

[j]w
j

+ µ

PCA: MINIMIZING RECONSTRUCTION ERROR

Goal: find the basis that minimizes reconstruction error,

n�
t=1
�x̂

t

− x

t

�22 = n�
t=1

������������
K�

j=1
y

t

[j]w
j

+ µ − x

t

������������
2

2

= n�
t=1

������������
K�

j=1
y

t

[j]w
j

+ µ − d�
j=1

y

t

[j]w
j

− µ
������������

2

2

= n�
t=1

������������
d�

j=K+1
y

t

[j]w
j

������������
2

2

(but �a + b�22 = �a�22 + �b�22 + 2a

�
b)

= n�
t=1

�
�

d�
j=K+1

y

t

[j]2�w
j

�22 + 2
d�

j=K+1

d�
i=j+1

y

t

[j]y
t

[i]w�
j

w

i

�
�

= n�
t=1

d�
j=k+1

y

t

[j]2�w
j

�22 (last step because w

j

⊥w

i

)

PCA: MINIMIZING RECONSTRUCTION ERROR

1
n

n�
t=1
�x̂

t

− x

t

�22 = 1
n

n�
t=1

d�
j=k+1

y

t

[j]2�w
j

�22 (but �w
j

� = 1)
= 1

n

n�
t=1

d�
j=k+1

y

t

[j]2 (now y

j

=w

�
j

(x
t

− µ))
= 1

n

n�
t=1

d�
j=k+1
(w�

j

(x
t

− µ))2

= 1
n

n�
t=1

d�
j=k+1

w

�
j

(x
t

− µ)(x
t

− µ)�w
j

= d�
j=k+1

w

�
j

⌃w

j

PCA: MINIMIZING RECONSTRUCTION ERROR

Minimize w.r.t. w1, . . . ,wK

’s that are orthonormal,

argmin
∀j, �w

j

�2=1

d�
j=k+1

w

�
j

⌃w

j

Solution, (discard) w

K+1, . . . ,w
d

are bottom d −K eigenvectors

Hence w1, . . . ,wK

are the top K eigenvectors

PRINCIPAL COMPONENT ANALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data × Top Keigenvectors

Reconstruction = Projection × Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.

⌃ =cov X
 !

1.

eigs= ⌃ ,K()W2.

3. Y = W⇥X�µ

RECONSTRUCTION

4.
Y= ⇥bX W>

+µ

WHEN d >> n

If d >> n then ⌃ is large
But we only need top K eigen vectors.
Idea: use SVD

X − µ = UDV

�
Then note that, ⌃ = (X − µ)�(X − µ) = VD

2
V

Hence, matrix V is the same as matrix W got from eigen
decomposition of ⌃, eigenvalues are diagonal elements of D

2

Alternative algorithm:

[U,V] = SVD(X − µ,K) W = V

U U = IT
V V = IT

PRINCIPAL COMPONENT ANALYSIS: DEMO

The Tall, THE FAT AND THE UGLY

Xn

d

The Tall, THE FAT AND THE UGLY

Xn

d

K

Wd = Eigs()⌃ ,K

X>d

n
⇥ = ⌃

d

dn

THE TALL, the Fat AND THE UGLY

Xn

d

SVD(X)

⇥ ⇥

d

n

n
U

d VW>

K

THE TALL, THE FAT AND the Ugly

d and n so large we can’t even store in memory
Only have time to be linear in size(X) = n × d

I there any hope?

X

PICK A RANDOM W

Y = X ⇥

2

666666664

+1 . . . �1
�1 . . . +1
+1 . . . �1

·
·
·

+1 . . . �1

3

777777775

d

K

p
K

WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Consider any vector x̃ ∈ Rd and let ỹ =W�
x̃. Note that

ỹ[j]2 = ��
d�

i=1
W[i, j] ⋅ x̃[i]��

2

=�
i,i ′
(W[i, j] ⋅ x̃[i]) ⋅ �W[i ′, j] ⋅ x̃[i ′]�

=�
i,i ′
�W[i, j] ⋅W[i ′, j]� ⋅ �x̃[i] ⋅ x̃[i ′]�

RANDOM PROJECTION

What does “it works” even mean?

Distances between all pairs of data-points in low dim. projection
is roughly the same as their distances in the high dim. space.

That is, when K is “large enough”, with “high probability”, for all
pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2

RANDOM PROJECTION

What does “it works” even mean?

Distances between all pairs of data-points in low dim. projection
is roughly the same as their distances in the high dim. space.

That is, when K is “large enough”, with “high probability”, for all
pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2

WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Say K = 1. Consider any vector x̃ ∈ Rd and let ỹ = x̃ W. Note that

ỹ

2 = ��
d�

i=1
W[i,1] ⋅ x̃[i]��

2

= d�
i=1
(W[i,1] ⋅ x̃[i])2 + 2�

i ′>i
(W[i,1] ⋅ x̃[i]) �W[i ′,1] ⋅ x̃[i ′]�

= d�
i=1

W2[i,1]x̃2[i] +�
i ′>i
�W[i,1] ⋅W[i ′,1]� ⋅ �x̃[i] ⋅ x̃[i ′]�

However W2[i,1] = 1�K = 1 when K = 1

= d�
i=1

x̃

2[i] +�
i ′>i
�W[i,1] ⋅W[i ′,1]� ⋅ �x̃[i] ⋅ x̃[i ′]�

WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Hence,

E�ỹ2� = d�
i=1

x̃

2[i] +�
i ′>i

E�W[i,1] ⋅W[i ′,1]� ⋅ �x̃[i] ⋅ x̃[i ′]�
However W[i,1] and W[i ′,1] are independent and so

E�W[i,1] ⋅W[i ′,1]� = E[W[i,1]] ⋅E�W[i ′,1]� = 0

Using this we conclude that

E�ỹ2� = d�
i=1

x̃

2[i] = �x̃�2

WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Hence,

E��ỹ�2� = �x̃�22
If we let x̃ = xs − xt then

ỹ = x̃W = xsW − xtW = ys − yt

Hence for any s, t ∈ {1, . . . ,n},
E��ys − yt�2� = �xs − xt�22

Lets try this in Matlab . . .

WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Setting K large is like getting K samples.
Specifically since we take W to be random signs normalized by√

K, for each j ∈ [K], for any x̃ if ỹ = x̃ W, then

E�ỹ2[j]� = �x̃�22 �K
Hence we can conclude that

E
������

K�
j=1

ỹ

2[j]������ =
K�

j=1
E�ỹ2[j]� = K�

j=1

�x̃�22
K
= �x̃�22

This is like taking an average of K independent measurements
whose expectations are �x̃�22

WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

For large K, not only true in expectation but also with high probability

For any ✏ > 0, if K ≈ log (n��) �✏2, with probability 1 − � over draw of
W, for all pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2

Lets try on Matlab . . .

This is called the Johnson-Lindenstrauss lemma or JL lemma for short.

2 2

WHY IS THIS SO RIDICULOUSLY MAGICAL?

n=
1000

d = 1000

WHY IS THIS SO RIDICULOUSLY MAGICAL?

n=
1000

d = 1000

If we take K = 69.1/✏2, with probability

0.99 distances are preserved to accuracy ✏

WHY IS THIS SO RIDICULOUSLY MAGICAL?

n=
1000

d = 10000

If we take K = 69.1/✏2, with probability

0.99 distances are preserved to accuracy ✏

WHY IS THIS SO RIDICULOUSLY MAGICAL?

n=
1000

d = 1000000

If we take K = 69.1/✏2, with probability

0.99 distances are preserved to accuracy ✏

