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PRINCIPAL COMPONENT ANALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data × Top Keigenvectors

Reconstruction = Projection × Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.

⌃ =cov X
 !

1.

eigs= ⌃ ,K( )W2.

3. Y = W⇥X�µ



Maximize Spread Minimize Reconstruction 
Error
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ORTHONORMAL PROJECTIONS

Think of w1, . . . ,wK

as coordinate system for PCA (in a K

dimensional subspace)

y values provide coefficients in this system

Without loss of generality, w1, . . . ,wK

can be orthonormal, i.e.
w

i

⊥w
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& �w
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� = 1.

Reconstruction:
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[j]w
j

If we take all w1, . . . ,w
d

, then x

t
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j=1 y
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[j]w
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. To reduce
dimensionality we only consider first K vectors of the basis
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CENTERING DATA

Compressing these data points…
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CENTERING DATA

… is same as compressing these.
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ORTHONORMAL PROJECTIONS

(Centered) Data-points as linear combination of some
orthonormal basis, i.e.

x

t

= µ + d�
j=1

y
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[j]w
j

where w1, . . . ,w
d

∈ Rd are the orthonormal basis and µ = 1
n

∑n

t=1 x

t

.
Represent data as linear combination of just K orthonormal basis,
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+ µ



PCA: MINIMIZING RECONSTRUCTION ERROR

Goal: find the basis that minimizes reconstruction error,
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PCA: MINIMIZING RECONSTRUCTION ERROR
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PCA: MINIMIZING RECONSTRUCTION ERROR

Minimize w.r.t. w1, . . . ,wK

’s that are orthonormal,

argmin
∀j, �w

j

�2=1

d�
j=k+1

w

�
j

⌃w

j

Solution, (discard) w

K+1, . . . ,w
d

are bottom d −K eigenvectors

Hence w1, . . . ,wK

are the top K eigenvectors



PRINCIPAL COMPONENT ANALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data × Top Keigenvectors

Reconstruction = Projection × Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.

⌃ =cov X
 !

1.

eigs= ⌃ ,K( )W2.

3. Y = W⇥X�µ



RECONSTRUCTION

4.
Y= ⇥bX W>

+µ



WHEN d >> n

If d >> n then ⌃ is large
But we only need top K eigen vectors.
Idea: use SVD

X − µ = UDV

�
Then note that, ⌃ = (X − µ)�(X − µ) = VD

2
V

Hence, matrix V is the same as matrix W got from eigen
decomposition of ⌃, eigenvalues are diagonal elements of D

2

Alternative algorithm:

[U,V] = SVD(X − µ,K) W = V

U U   =  IT
V V   =  IT



PRINCIPAL COMPONENT ANALYSIS: DEMO



The Tall, THE FAT AND THE UGLY

Xn

d



The Tall, THE FAT AND THE UGLY
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THE TALL, the Fat AND THE UGLY
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THE TALL, THE FAT AND the Ugly

d and n so large we can’t even store in memory
Only have time to be linear in size(X) = n × d

I there any hope?

X



PICK A RANDOM W

Y = X ⇥
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WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Consider any vector x̃ ∈ Rd and let ỹ =W�
x̃. Note that

ỹ[j]2 = ��
d�

i=1
W[i, j] ⋅ x̃[i]��

2

=�
i,i ′
(W[i, j] ⋅ x̃[i]) ⋅ �W[i ′, j] ⋅ x̃[i ′]�

=�
i,i ′
�W[i, j] ⋅W[i ′, j]� ⋅ �x̃[i] ⋅ x̃[i ′]�



RANDOM PROJECTION

What does “it works” even mean?

Distances between all pairs of data-points in low dim. projection
is roughly the same as their distances in the high dim. space.

That is, when K is “large enough”, with “high probability”, for all
pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2



RANDOM PROJECTION

What does “it works” even mean?

Distances between all pairs of data-points in low dim. projection
is roughly the same as their distances in the high dim. space.

That is, when K is “large enough”, with “high probability”, for all
pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Say K = 1. Consider any vector x̃ ∈ Rd and let ỹ = x̃ W. Note that

ỹ

2 = ��
d�

i=1
W[i,1] ⋅ x̃[i]��

2

= d�
i=1
(W[i,1] ⋅ x̃[i])2 + 2�

i ′>i
(W[i,1] ⋅ x̃[i]) �W[i ′,1] ⋅ x̃[i ′]�

= d�
i=1

W2[i,1]x̃2[i] +�
i ′>i
�W[i,1] ⋅W[i ′,1]� ⋅ �x̃[i] ⋅ x̃[i ′]�

However W2[i,1] = 1�K = 1 when K = 1

= d�
i=1

x̃

2[i] +�
i ′>i
�W[i,1] ⋅W[i ′,1]� ⋅ �x̃[i] ⋅ x̃[i ′]�



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Hence,

E�ỹ2� = d�
i=1

x̃

2[i] +�
i ′>i

E�W[i,1] ⋅W[i ′,1]� ⋅ �x̃[i] ⋅ x̃[i ′]�
However W[i,1] and W[i ′,1] are independent and so

E�W[i,1] ⋅W[i ′,1]� = E[W[i,1]] ⋅E�W[i ′,1]� = 0

Using this we conclude that

E�ỹ2� = d�
i=1

x̃

2[i] = �x̃�2



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Hence,

E��ỹ�2� = �x̃�22
If we let x̃ = xs − xt then

ỹ = x̃W = xsW − xtW = ys − yt

Hence for any s, t ∈ {1, . . . ,n},
E��ys − yt�2� = �xs − xt�22

Lets try this in Matlab . . .



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Setting K large is like getting K samples.
Specifically since we take W to be random signs normalized by√

K, for each j ∈ [K], for any x̃ if ỹ = x̃ W, then

E�ỹ2[j]� = �x̃�22 �K
Hence we can conclude that

E
������

K�
j=1

ỹ

2[j]������ =
K�

j=1
E�ỹ2[j]� = K�

j=1

�x̃�22
K
= �x̃�22

This is like taking an average of K independent measurements
whose expectations are �x̃�22



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

For large K, not only true in expectation but also with high probability

For any ✏ > 0, if K ≈ log (n��) �✏2, with probability 1 − � over draw of
W, for all pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2

Lets try on Matlab . . .

This is called the Johnson-Lindenstrauss lemma or JL lemma for short.
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WHY IS THIS SO RIDICULOUSLY MAGICAL?

n= 
1000

d = 1000



WHY IS THIS SO RIDICULOUSLY MAGICAL?

n= 
1000

d = 1000

If we take K = 69.1/✏2, with probability

0.99 distances are preserved to accuracy ✏



WHY IS THIS SO RIDICULOUSLY MAGICAL?

n= 
1000

d = 10000

If we take K = 69.1/✏2, with probability

0.99 distances are preserved to accuracy ✏



WHY IS THIS SO RIDICULOUSLY MAGICAL?

n= 
1000

d = 1000000

If we take K = 69.1/✏2, with probability

0.99 distances are preserved to accuracy ✏


