Machine Learning for Data Science (CS4786)

Lecture 10

PCA and Random Projections

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2017fa/



PRINCIPAL COMPONENT ANALYSIS
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ORTHONORMAL PROJECTIONS

@ Think of wy, ..., wg as coordinate system for PCA (ina K
dimensional subspace)

@ y values provide coetficients in this system

@ Without loss of generality, wy, .. ., wg can be orthonormal, i.e.
Wi 1l Ww; & HWZH = 1.

d
|will3 =) wilk]’
k=1

d
w; Lw; =) wilklw;[k] =0
k=1
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Compressing these data points...



CENTERING DATA
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... IS same as compressing these.



ORTHONORMAL PROJECTIONS

@ (Centered) Data-points as linear combination of some
orthonormal basis, i.e.

d
Xt = UL+ Zyt[]]w]
j=1

where wy, ..., W, € R? are the orthonormal basis and = % >rq Xt

@ Represent data as linear combination of just K orthonormal basis,

K
f(t = U+ ZytD]W]
j=1



PCA: MINIMIZING RECONSTRUCTION ERROR

@ Goal: find the basis that minimizes reconstruction error,

2
n n K
Y%= xel3 = 2 | D yelflw + n-xq
t=1 t=1 || j=1 5
n K | d 2
=S Y yelflwi+n =Y yililwi -
t=1 j=1 ]:1 5
- : 2 2 2 2 T
=S wililwi|  (but [a+b)3 = a3+ [b]3 +247b)
=1 ]':K+1 ’
n 2 d
=) Z ye[j17 w5 +2 > Z ye[jly:[ilw; w;
t=1 \j=K+1 j=K+11=j+1
n d
=y > yt[j]sz]-H% (last step because w; L w;)
t=1j=k+1



PCA: MINIMIZING RECONSTRUCTION ERROR

1 M A ) 1 M d . .
2 % =xl3 == >, wlil"lwilz  (but |w;] = 1)
ni3 41 j=k+1
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PCA: MINIMIZING RECONSTRUCTION ERROR

Minimize w.r.t. wq, ..., wg’s that are orthonormal,

d
: T
argmin Z W Zw;
vj, [wi],=1/=k+1

@ Solution, (discard) wk,1, ..., w, are bottom d — K eigenvectors

@ Hencewq, ..., wg are the top K eigenvectors



PRINCIPAL COMPONENT ANALYSIS




RECONSTRUCTION
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WHEN d >> n

@ If d >>n then X is large

@ But we only need top K eigen vectors.
@ Idea: use SVD VAY

X-w=UDV" U'u
Then note that, £ = (X — )" (X - ) = VD?V

@ Hence, matrix V is the same as matrix W got from eigen
decomposition of £, eigenvalues are diagonal elements of D

1|
——

@ Alternative algorithm:

(U, V] =SVD(X-w,K) W=V






The Tall, THE FAT AND THE UGLY




The Tall, THE FAT AND THE UGLY




THE TALL, the Fat AND THE UGLY




THE TALL, THE FAT AND the Ugly

@ d and n so large we can’t even store in memory

@ Only have time to be linear in size(X) =n x d

I there any hope?




PiICK A RANDOM W

+1 —1
—1 +1
+1 ... =1 p
Y = X X - 1/[(
+1 —1



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!



RANDOM PROJECTION

@ What does “it works” even mean?



RANDOM PROJECTION

@ What does “it works” even mean?

Distances between all pairs of data-points in low dim. projection
is roughly the same as their distances in the high dim. space.

That is, when K is “large enough”, with “high probability”, for all
pairs of data points 7,7 € {1,..., ny,

(=€) |lyi-yil, < Ixi=xjl, < (1 + €) [yi -yl



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Say K = 1. Consider any vector X € R? and let § = X W. Note that

However W2[i,1] =1/K =1 when K =1

d
= Ziz[i] + (WL 1] - W 1) - (%] - x[E])

17>1

LY
I
p—



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Hence,

However W[i, 1] and W[i’, 1] are independent and so

E|W[i,1]-W[i', 1]| = E[W[i, 1]] - E[W[i’,1]| = 0

Using this we conclude that

d
1[7°] = ;ﬁi] = x|

1



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Hence,
B[l51°] = %13
If we let X = x; — x; then
y=xW=xsW-xsW =y, —y;

Hence for any s,t € {1, ..., nt,

[ lys - yel*] = x5 = x5

Lets try this in Matlab ...



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

@ Setting K large is like getting K samples.

@ Specifically since we take W to be random signs normalized by
V'K, for each j € [K], for any X if § =X W, then

E[§°[]] = |%]3 /K

Hence we can conclude that

-

K
E| > §°[j]] =
j=1

—

K
j=1

This is like taking an average of K independent measurements
whose expectations are HS’(H%



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

For large K, not only true in expectation but also with high probability

For any € > 0, if K ~ log (11/5) /€*, with probability 1 - § over draw of
W, for all pairs of data points 7,7 € {1,..., ny,

(A=) yi-yl < Ixi-xil, < A+ ) Jyi -yl

Lets try on Matlab ...

This is called the Johnson-Lindenstrauss lemma or JL lemmma for short.



WHY IS THIS SO RIDICULOUSLY MAGICAL?

d = 1000



WHY IS THIS SO RIDICULOUSLY MAGICAL?

1000

d = 1000

If we take K = 69.1/¢*, with probability

0.99 distances are preserved to accuracy €



WHY IS THIS SO RIDICULOUSLY MAGICAL?

1000

d = 10000

If we take K = 69.1/¢*, with probability

0.99 distances are preserved to accuracy €



WHY IS THIS SO RIDICULOUSLY MAGICAL?

d = 1000000

If we take K = 69.1/¢*, with probability

0.99 distances are preserved to accuracy €




