Machine Learning for Data Science (CS4786) Lecture 8

Mixture Models, Dimensionality Reduction

Course Webpage:

http://www.cs.cornell.edu/Courses/cs4786/2017fa/

TOWARDS HARD GAUSSIAN MIXTURE MODEL

- For all $j \in [K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$, ellipsoids $\hat{\Sigma}_{j}^{0}$ and initial proportions π^{0} randomly and set m = 1
- Repeat until convergence (or until patience runs out)
 - ① For each $t \in \{1, ..., n\}$, set cluster identity of the point

$$\hat{c}^m(\mathbf{x}_t) = \underset{j \in [K]}{\operatorname{argmin}} \quad (\mathbf{x}_t - \hat{\mathbf{r}}_j^{m-1})^{\top} \left(\hat{\Sigma}_j^{m-1}\right)^{-1} (\mathbf{x}_t - \hat{\mathbf{r}}_j^{m-1}) - \log(\pi_j^{m-1})$$

2 For each $j \in [K]$, set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{\mathbf{x}_t \in \hat{C}_j^m} \mathbf{x}_t \qquad \hat{\Sigma}_j^m = \frac{1}{|C_j|} \sum_{t \in C_j} (\mathbf{x}_t - \hat{\mathbf{r}}_j^m) (\mathbf{x}_t - \hat{\mathbf{r}}_j^m)^{\top} \qquad \pi_j^m = \frac{|C_j^m|}{n}$$

TOWARDS HARD GAUSSIAN MIXTURE MODEL

- For all $j \in [K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$, ellipsoids $\hat{\Sigma}_{j}^{0}$ and initial proportions π^{0} randomly and set m = 1
- Repeat until convergence (or until patience runs out)
 - ① For each $t \in \{1, ..., n\}$, set cluster identity of the point

$$\hat{c}^m(\mathbf{x}_t) = \underset{j \in [K]}{\operatorname{argmin}} \quad (\mathbf{x}_t - \hat{\mathbf{r}}_j^{m-1})^{\top} \left(\hat{\Sigma}_j^{m-1}\right)^{-1} \left(\mathbf{x}_t - \hat{\mathbf{r}}_j^{m-1}\right) - \log(\pi_j^{m-1})$$

② For each $j \in [K]$, set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{\mathbf{x}_t \in \hat{C}_j^m} \mathbf{x}_t \qquad \hat{\Sigma}_j^m = \frac{1}{|C_j|} \sum_{t \in C_j} (\mathbf{x}_t - \hat{\mathbf{r}}_j^m) (\mathbf{x}_t - \hat{\mathbf{r}}_j^m)^{\top} \qquad \pi_j^m = \frac{|C_j^m|}{n}$$

 $m \leftarrow m + 1$

TOWARDS HARD GAUSSIAN MIXTURE MODEL

- For all $j \in [K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$, ellipsoids $\hat{\Sigma}_{j}^{0}$ and initial proportions π^{0} randomly and set m = 1
- Repeat until convergence (or until patience runs out)
 - ① For each $t \in \{1, ..., n\}$, set cluster identity of the point

$$\hat{c}^{m}(\mathbf{x}_{t}) = \underset{j \in [K]}{\operatorname{argmin}} \quad (\mathbf{x}_{t} - \hat{\mathbf{r}}_{j}^{m-1})^{\top} \left(\hat{\Sigma}_{j}^{m-1}\right)^{-1} (\mathbf{x}_{t} - \hat{\mathbf{r}}_{j}^{m-1}) - \log(\pi_{j}^{m-1})$$

$$d(\mathbf{x}_{t}, C_{j})$$

② For each $j \in [K]$, set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{\mathbf{x}_t \in \hat{C}_j^m} \mathbf{x}_t \qquad \hat{\Sigma}_j^m = \frac{1}{|C_j|} \sum_{t \in C_j} (\mathbf{x}_t - \hat{\mathbf{r}}_j^m) (\mathbf{x}_t - \hat{\mathbf{r}}_j^m)^{\top} \qquad \pi_j^m = \frac{|C_j^m|}{n}$$

 $m \leftarrow m + 1$

GENERAL HARD MIXTURE MODEL

- For all $j \in [K]$, initialize π^0 and parameters $\theta_1, \ldots, \theta_K$ randomly and set m = 1
- Repeat until convergence (or until patience runs out)
 - ① For each $t \in \{1, ..., n\}$, set cluster identity of the point

$$\hat{c}^m(\mathbf{x}_t) = \underset{j \in [K]}{\operatorname{argmin}} \ d(\mathbf{x}_t, \theta_j) - \log(\pi_j^{m-1})$$

② For each $j \in [K]$, set new representative as

compute
$$\theta_j$$
 for cluster C_j & $\pi_j^m = \frac{|C_j^m|}{n}$

Multivariate Gaussian

- Two parameters:
 - Mean $\mu \in \mathbb{R}^d$
 - Covariance matrix \sum of size dxd

$$p(x; \mu, \Sigma) = (2\pi)^{d/2} \det(\Sigma)^{-1/2} \exp\left(-\frac{1}{2}(x - \mu)^{\top} \Sigma^{-1}(x - \mu)\right)$$

Multivariate Gaussian

- Two parameters:
 - Mean $\mu \in \mathbb{R}^d$
 - Covariance matrix Σ of size dxd

$$p(x; \mu, \Sigma) = (2\pi)^{d/2} \det(\Sigma)^{-1/2} \exp\left(-\frac{1}{2}(x - \mu)^{\top} \Sigma^{-1}(x - \mu)\right)$$

0.4

0.2

HARD GAUSSIAN MIXTURE MODEL

- For all $j \in [K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$, ellipsoids $\hat{\Sigma}_{j}^{0}$ and initial proportions π^{0} randomly and set m = 1
- Repeat until convergence (or until patience runs out)
 - ① For each $t \in \{1, ..., n\}$, set cluster identity of the point

$$\hat{c}^m(\mathbf{x}_t) = \arg\max_{j \in [K]} p(\mathbf{x}_t, \hat{\mathbf{r}}_j^{m-1}, \hat{\Sigma}_j^{m-1}) \times \pi^m(j)$$

2 For each $j \in [K]$, set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{\mathbf{x}_t \in \hat{C}_j^m} \mathbf{x}_t \qquad \hat{\Sigma}_j^m = \frac{1}{|C_j|} \sum_{t \in C_j} (\mathbf{x}_t - \hat{\mathbf{r}}_j^m) (\mathbf{x}_t - \hat{\mathbf{r}}_j^m)^{\top} \qquad \pi_j^m = \frac{|C_j^m|}{n}$$

GENERAL HARD MIXTURE MODEL

- For all $j \in [K]$, initialize π^0 and parameters $\theta_1, \ldots, \theta_K$ randomly and set m = 1
- Repeat until convergence (or until patience runs out)
 - ① For each $t \in \{1, ..., n\}$, set cluster identity of the point

$$\hat{c}^{m}(\mathbf{x}_{t}) = \underset{j \in [K]}{\operatorname{arg\,max}} p(\mathbf{x}_{t}, \theta_{j}) \times \pi_{j}^{m-1}$$

② For each $j \in [K]$, set new representative as

compute
$$\theta_j$$
 for cluster C_j & $\pi_j^m = \frac{|C_j^m|}{n}$

Demo

Pitfall of Hard Assignment

(SOFT) GAUSSIAN MIXTURE MODEL

- For all $j \in [K]$, initialize cluster centroids $\hat{\mathbf{r}}_j^0$ and ellipsoids $\hat{\Sigma}_j^0$ randomly and set m = 1
- Repeat until convergence (or until patience runs out)
 - ① For each $t \in \{1, ..., n\}$, set cluster identity of the point

$$Q_t^m(j) \propto p(\mathbf{x}_t, \hat{\mathbf{r}}_j^{m-1}, \hat{\Sigma}_j^{m-1}) \times \pi^{m-1}(j)$$

② For each $j \in [K]$, set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{\sum_{t=1}^n Q_t(j)\mathbf{x}_t}{\sum_{t=1}^n Q_t(j)} \qquad \hat{\Sigma}_j^m = \frac{\sum_{t=1}^n Q_t(j)(\mathbf{x}_t - \hat{\mathbf{r}}_j^m)(\mathbf{x}_t - \hat{\mathbf{r}}_j^m)}{\sum_{t=1}^n Q_t(j)}$$

$$\pi_j^m = \frac{\sum_{t=1}^n Q_t(j)}{n}$$

 $m \leftarrow m + 1$

How to choose K

- Elbow method:
 - plot Objective versus K, typically it monotonically decreases.
 - Pick point where there is a kink (explanation in variance is not as much)
 - Intuition: look at rate of change
- Add to objective penalty + p(K) and minimize, where p increases with K
 - intuition we prefer smaller clusters
 - Use prior knowledge to pick p
 - (AIC, BIC etc can been seen to be specific cases)

• You are provided with n data points each in \mathbb{R}^d

- Goal: Compress data into n, points in \mathbb{R}^K where K << d
 - Retain as much information about the original data set
 - Retain desired properties of the original data set

- For computational ease
 - As input to supervised learning algorithm
 - Before clustering to remove redundant information and noise
- Data compression & Noise reduction
- Data visualization

Given feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$ where K << d

Desired properties:

- Original data can be (approximately) reconstructed
- Preserve distances between data points
- "Relevant" information is preserved
- 4 Noise is reduced

- Pick a low dimensional subspace
- Project linearly to this subspace
- Subspace retains as much information

Example: Students in classroom

Example: Students in classroom

PCA: VARIANCE MAXIMIZATION

PCA: VARIANCE MAXIMIZATION

PCA: VARIANCE MAXIMIZATION

DIM REDUCTION: LINEAR TRANSFORMATION

Prelude: reducing to 1 dimension

- Pick directions along which data varies the most
- First principal component:

$$\mathbf{w}_1 = \arg\max_{\mathbf{w}: \|\mathbf{w}\|_2 = 1} \frac{1}{n} \sum_{t=1}^n \left(\mathbf{w}^\mathsf{T} \mathbf{x}_t - \frac{1}{n} \sum_{t=1}^n \mathbf{w}^\mathsf{T} \mathbf{x}_t \right)^2$$

- Pick directions along which data varies the most
- First principal component:

$$\mathbf{w}_{1} = \arg \max_{\mathbf{w}: \|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{t} - \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\mathsf{T}} \mathbf{x}_{t} \right)^{2}$$

$$= \arg \max_{\mathbf{w}: \|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\mathsf{T}} (\mathbf{x}_{t} - \boldsymbol{\mu}) \right)^{2}$$

- Pick directions along which data varies the most
- First principal component:

$$\mathbf{w}_{1} = \arg \max_{\mathbf{w}: \|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{t} - \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\mathsf{T}} \mathbf{x}_{t} \right)^{2}$$

$$= \arg \max_{\mathbf{w}: \|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\mathsf{T}} (\mathbf{x}_{t} - \boldsymbol{\mu}) \right)^{2}$$

$$= \arg \max_{\mathbf{w}: \|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\mathsf{T}} (\mathbf{x}_{t} - \boldsymbol{\mu}) (\mathbf{x}_{t} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{w}$$

- Pick directions along which data varies the most
- First principal component:

$$\mathbf{w}_{1} = \arg \max_{\mathbf{w}: \|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{t} - \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\mathsf{T}} \mathbf{x}_{t} \right)^{2}$$

$$= \arg \max_{\mathbf{w}: \|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\mathsf{T}} (\mathbf{x}_{t} - \boldsymbol{\mu}) \right)^{2}$$

$$= \arg \max_{\mathbf{w}: \|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\mathsf{T}} (\mathbf{x}_{t} - \boldsymbol{\mu}) (\mathbf{x}_{t} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{w}$$

$$= \arg \max_{\mathbf{w}: \|\mathbf{w}\|_{2}=1} \mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma} \mathbf{w}$$

$$= \arg \max_{\mathbf{w}: \|\mathbf{w}\|_{2}=1} \mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma} \mathbf{w}$$

 Σ is the covariance matrix

Review

- Review covariance
- Review Eigen vectors

Covariance Matrix

• Its a $d \times d$ matrix, $\sum [i, j]$ measures "covariance" of features i and j

$$\Sigma[i,j] = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{x}_t[i] - \mu[i]) (\mathbf{x}_t[j] - \mu[j])$$

Covariance matrix:

$$\Sigma = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{x}_t - \boldsymbol{\mu}) (\mathbf{x}_t - \boldsymbol{\mu})^{\top}$$

• Its a $d \times d$ matrix, $\sum [i, j]$ measures "covariance" of features i and j

$$\Sigma[i,j] = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{x}_t[i] - \mu[i]) (\mathbf{x}_t[j] - \mu[j])$$

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$A\mathbf{x} = \lambda \mathbf{x}$$