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TOWARDS HARD GAUSSIAN MIXTURE MODEL
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GENERAL HARD MIXTURE MODEL

For all j ∈ [K], initialize ⇡0 and parameters ✓1, . . . ,✓K randomly
and set m = 1
Repeat until convergence (or until patience runs out)

1 For each t ∈ {1, . . . ,n}, set cluster identity of the point

ĉm(xt) = argmin
j∈[K]

d(xt,✓j) − log(⇡m−1
j )

2 For each j ∈ [K], set new representative as

compute ✓j for cluster Cj & ⇡m
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m
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Multivariate Gaussian
• Two parameters: 

• Mean  

• Covariance matrix     of size dxd

µ 2 Rd
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HARD GAUSSIAN MIXTURE MODEL

For all j ∈ [K], initialize cluster centroids r̂

0
j , ellipsoids ⌃̂0

j and
initial proportions ⇡0 randomly and set m = 1
Repeat until convergence (or until patience runs out)

1 For each t ∈ {1, . . . ,n}, set cluster identity of the point
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ĉm(xt) = arg max
j∈[K] p(xt,✓j) × ⇡m−1

j

2 For each j ∈ [K], set new representative as

compute ✓j for cluster Cj & ⇡m
j = �C

m
j �

n

3 m← m + 1



Demo



Pitfall of Hard Assignment
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(SOFT) GAUSSIAN MIXTURE MODEL

For all j ∈ [K], initialize cluster centroids r̂

0
j and ellipsoids ⌃̂0

j
randomly and set m = 1
Repeat until convergence (or until patience runs out)

1 For each t ∈ {1, . . . ,n}, set cluster identity of the point
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How to choose K
• Elbow method:  

• plot Objective versus K, typically it monotonically decreases.  

• Pick point where there is a kink (explanation in variance is not as much) 

• Intuition: look at rate of change 

• Add to objective penalty + p(K) and minimize, where p increases with K   

• intuition we prefer smaller clusters 

•  Use prior knowledge to pick p 

• (AIC, BIC etc can been seen to be specific cases)



DIMENSIONALITY REDUCTION

Given feature vectors x1, . . . ,xn

∈ Rd, compress the data points into
low dimensional representation y1, . . . ,yn

∈ RK where K << d
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DIMENSIONALITY REDUCTION

You are provided with n data points each in Rd

Goal: Compress data into n, points in RK where K << d

Retain as much information about the original data set

Retain desired properties of the original data set



WHY DIMENSIONALITY REDUCTION?

For computational ease

As input to supervised learning algorithm

Before clustering to remove redundant information and noise

Data compression & Noise reduction

Data visualization
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DIMENSIONALITY REDUCTION

Desired properties:

1 Original data can be (approximately) reconstructed

2 Preserve distances between data points

3 “Relevant” information is preserved

4 Noise is reduced



DIM REDUCTION: LINEAR TRANSFORMATION

Pick a low dimensional subspace

Project linearly to this subspace

Subspace retains as much information
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PCA: VARIANCE MAXIMIZATION

Pick directions along which data varies the most
First principal component:

w1 = arg max
w∶�w�2=1
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DIM REDUCTION: LINEAR TRANSFORMATION
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Prelude: reducing to 1 dimension
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Review

• Review covariance 

• Review Eigen vectors



PCA: VARIANCE MAXIMIZATION

Covariance matrix:
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