Machine Learning for Data Science (CS4786) Lecture 8

Mixture Models, Dimensionality Reduction

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2017fa/

Towards Hard Gaussian Mixture Model

- For all $j \in[K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$, ellipsoids $\hat{\Sigma}_{j}^{0}$ and initial proportions π^{0} randomly and set $m=1$
- Repeat until convergence (or until patience runs out)
(1) For each $t \in\{1, \ldots, n\}$, set cluster identity of the point

$$
\hat{\boldsymbol{c}}^{m}\left(\mathbf{x}_{t}\right)=\underset{j \in[K]}{\operatorname{argmin}}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m-1}\right)^{\top}\left(\hat{\Sigma}_{j}^{m-1}\right)^{-1}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m-1}\right)-\log \left(\pi_{j}^{m-1}\right)
$$

(2) For each $j \in[K]$, set new representative as

$$
\hat{\mathbf{r}}_{j}^{m}=\frac{1}{\left|\hat{C}_{j}^{m}\right|} \sum_{\mathbf{x}_{t} \in \hat{C}_{j}^{m}} \mathbf{x}_{t} \quad \hat{\Sigma}_{j}^{m}=\frac{1}{\left|C_{j}\right|} \sum_{t \in C_{j}}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)^{\top} \quad \pi_{j}^{m}=\frac{\left|C_{j}^{m}\right|}{n}
$$

(3) $m \leftarrow m+1$

Towards Hard Gaussian Mixture Model

- For all $j \in[K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$, ellipsoids $\hat{\Sigma}_{j}^{0}$ and initial proportions π^{0} randomly and set $m=1$
- Repeat until convergence (or until patience runs out)
(1) For each $t \in\{1, \ldots, n\}$, set cluster identity of the point

$$
\hat{c}^{m}\left(\mathbf{x}_{t}\right)=\underset{j \in[K]}{\operatorname{argmin}}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m-1}\right)^{\top}\left(\hat{\Sigma}_{j}^{m-1}\right)^{-1}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m-1}-\log \left(\pi_{j}^{m-1}\right)\right.
$$

(2) For each $j \in[K]$, set new representative as

$$
\hat{\mathbf{r}}_{j}^{m}=\frac{1}{\left|\hat{C}_{j}^{m}\right|} \sum_{\mathbf{x}_{t} \in \hat{C}_{j}^{m}} \mathbf{x}_{t} \quad \hat{\Sigma}_{j}^{m}=\frac{1}{\left|C_{j}\right|} \sum_{t \in C_{j}}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)^{\top} \quad \pi_{j}^{m}=\frac{\left|C_{j}^{m}\right|}{n}
$$

(3) $m \leftarrow m+1$

Towards Hard Gaussian Mixture Model

- For all $j \in[K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$, ellipsoids $\hat{\Sigma}_{j}^{0}$ and initial proportions π^{0} randomly and set $m=1$
- Repeat until convergence (or until patience runs out)
(1) For each $t \in\{1, \ldots, n\}$, set cluster identity of the point

$$
\begin{gathered}
\hat{c}^{m}\left(\mathbf{x}_{t}\right)=\underset{j \in[K]}{\operatorname{argmin}}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m-1}\right)^{\top}\left(\hat{\Sigma}_{j}^{m-1}\right)^{-1}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m-1}-\log \left(\pi_{j}^{m-1}\right)\right. \\
d\left(\mathbf{x}_{t}, C_{j}\right)
\end{gathered}
$$

(2) For each $j \in[K]$, set new representative as

$$
\hat{\mathbf{r}}_{j}^{m}=\frac{1}{\left|\hat{C}_{j}^{m}\right|} \sum_{\mathbf{x}_{t} \in \hat{C}_{j}^{m}} \mathbf{x}_{t} \quad \hat{\Sigma}_{j}^{m}=\frac{1}{\left|C_{j}\right|} \sum_{t \in C_{j}}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)^{\top} \quad \pi_{j}^{m}=\frac{\left|C_{j}^{m}\right|}{n}
$$

(3) $m \leftarrow m+1$

General Hard Mixture Model

- For all $j \in[K]$, initialize π^{0} and parameters $\theta_{1}, \ldots, \theta_{K}$ randomly and set $m=1$
- Repeat until convergence (or until patience runs out)
(1) For each $t \in\{1, \ldots, n\}$, set cluster identity of the point

$$
\hat{c}^{m}\left(\mathbf{x}_{t}\right)=\underset{j \in[K]}{\operatorname{argmin}} d\left(\mathbf{x}_{t}, \theta_{j}\right)-\log \left(\pi_{j}^{m-1}\right)
$$

(2) For each $j \in[K]$, set new representative as
compute θ_{j} for cluster $C_{j} \quad \& \quad \pi_{j}^{m}=\frac{\left|C_{j}^{m}\right|}{n}$
(3) $m \leftarrow m+1$

Multivariate Gaussian

- Two parameters:
- Mean $\mu \in \mathbb{R}^{d}$
- Covariance matrix Σ of size dxd
$p(x ; \mu, \Sigma)=(2 \pi)^{d / 2} \operatorname{det}(\Sigma)^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$

Multivariate Gaussian

- Two parameters:
- Mean $\mu \in \mathbb{R}^{d}$
- Covariance matrix Σ of size dxd

$$
p(x ; \mu, \Sigma)=(2 \pi)^{d / 2} \operatorname{det}(\Sigma)^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)
$$

Hard Gaussian Mixture Model

- For all $j \in[K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$, ellipsoids $\hat{\Sigma}_{j}^{0}$ and initial proportions π^{0} randomly and set $m=1$
- Repeat until convergence (or until patience runs out)
(1) For each $t \in\{1, \ldots, n\}$, set cluster identity of the point

$$
\hat{c}^{m}\left(\mathbf{x}_{t}\right)=\arg \max _{j \in[K]} p\left(\mathbf{x}_{t}, \hat{\mathbf{r}}_{j}^{m-1}, \hat{\Sigma}_{j}^{m-1}\right) \times \pi^{m}(j)
$$

(2) For each $j \in[K]$, set new representative as

$$
\hat{\mathbf{r}}_{j}^{m}=\frac{1}{\left|\hat{C}_{j}^{m}\right|} \sum_{\mathbf{x}_{t} \in \hat{C}_{j}^{m}} \mathbf{x}_{t} \quad \hat{\Sigma}_{j}^{m}=\frac{1}{\left|C_{j}\right|} \sum_{t \in C_{j}}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)^{\top} \quad \pi_{j}^{m}=\frac{\left|C_{j}^{m}\right|}{n}
$$

(3) $m \leftarrow m+1$

General Hard Mixture Model

- For all $j \in[K]$, initialize π^{0} and parameters $\theta_{1}, \ldots, \theta_{K}$ randomly and set $m=1$
- Repeat until convergence (or until patience runs out)
(1) For each $t \in\{1, \ldots, n\}$, set cluster identity of the point

$$
\hat{c}^{m}\left(\mathbf{x}_{t}\right)=\arg \max _{j \in[K]} p\left(\mathbf{x}_{t}, \theta_{j}\right) \times \pi_{j}^{m-1}
$$

(2) For each $j \in[K]$, set new representative as
compute θ_{j} for cluster $C_{j} \quad \& \quad \pi_{j}^{m}=\frac{\left|C_{j}^{m}\right|}{n}$
(3) $m \leftarrow m+1$

Demo

Pitfall of Hard Assignment

(Soft) Gaussian Mixture Model

- For all $j \in[K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$ and ellipsoids $\hat{\Sigma}_{j}^{0}$ randomly and set $m=1$
- Repeat until convergence (or until patience runs out)
(1) For each $t \in\{1, \ldots, n\}$, set cluster identity of the point

$$
Q_{t}^{m}(j) \propto p\left(\mathbf{x}_{t}, \hat{\mathbf{r}}_{j}^{m-1}, \hat{\Sigma}_{j}^{m-1}\right) \times \pi^{m-1}(j)
$$

(2) For each $j \in[K]$, set new representative as

$$
\begin{gathered}
\hat{\mathbf{r}}_{j}^{m}=\frac{\sum_{t=1}^{n} Q_{t}(j) \mathbf{x}_{t}}{\sum_{t=1}^{n} Q_{t}(j)} \quad \hat{\Sigma}_{j}^{m}=\frac{\sum_{t=1}^{n} Q_{t}(j)\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)^{\top}}{\sum_{t=1}^{n} Q_{t}(j)} \\
\pi_{j}^{m}=\frac{\sum_{t=1}^{n} Q_{t}(j)}{n}
\end{gathered}
$$

(3) $m \leftarrow m+1$

How to choose K

- Elbow method:
- plot Objective versus K, typically it monotonically decreases.
- Pick point where there is a kink (explanation in variance is not as much)
- Intuition: look at rate of change
- Add to objective penalty $+\mathrm{p}(\mathrm{K})$ and minimize, where p increases with K
- intuition we prefer smaller clusters
- Use prior knowledge to pick p
- (AIC, BIC etc can been seen to be specific cases)

Dimensionality Reduction

Dimensionality Reduction

Dimensionality Reduction

DIMENSIONALITY REDUCTION

- You are provided with n data points each in \mathbb{R}^{d}
- Goal: Compress data into n, points in \mathbb{R}^{K} where $K \ll d$
- Retain as much information about the original data set
- Retain desired properties of the original data set

WHY DIMENSIONALITY REDUCTION?

- For computational ease
- As input to supervised learning algorithm
- Before clustering to remove redundant information and noise
- Data compression \& Noise reduction
- Data visualization

DIMENSIONALITY REDUCTION

Given feature vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$, compress the data points into low dimensional representation $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \in \mathbb{R}^{K}$ where $K \ll d$

DIMENSIONALITY REDUCTION

Desired properties:
(1) Original data can be (approximately) reconstructed
(2) Preserve distances between data points
(3) "Relevant" information is preserved
(4) Noise is reduced

Dim Reduction: Linear Transformation

- Pick a low dimensional subspace
- Project linearly to this subspace
- Subspace retains as much information

Example:
 Students in classroom

Example:
 Students in classroom

PCA: VARIANCE MAXIMIZATION

PCA: VARIANCE MAXIMIZATION

PCA: VARIANCE MAXIMIZATION

Prelude: reducing to 1 dimension

Prelude: reducing to 1 dimension

Prelude: reducing to 1 dimension

Prelude: reducing to 1 dimension

Dim Reduction: Linear Transformation

Prelude: reducing to 1 dimension

$$
\mathbf{y}_{1}=\mathbf{w}^{\top} \mathbf{x}_{1}=\left\|\mathbf{x}_{1}\right\| \cos \left(\angle \mathbf{w} \mathbf{x}_{1}\right)
$$

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most
- First principal component:

$$
\mathbf{w}_{1}=\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\top} \mathbf{x}_{t}\right)^{2}
$$

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most
- First principal component:

$$
\begin{aligned}
\mathbf{w}_{1} & =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\top} \mathbf{x}_{t}\right)^{2} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right)^{2}
\end{aligned}
$$

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most
- First principal component:

$$
\begin{aligned}
\mathbf{w}_{1} & =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\top} \mathbf{x}_{t}\right)^{2} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right)^{2} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\left(\mathbf{x}_{t}-\mu\right)^{\top} \mathbf{w}
\end{aligned}
$$

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most
- First principal component:

$$
\begin{aligned}
\mathbf{w}_{1} & =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\top} \mathbf{x}_{t}\right)^{2} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right)^{2} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\left(\mathbf{x}_{t}-\mu\right)^{\top} \mathbf{w} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \mathbf{w}^{\top} \Sigma \mathbf{w}
\end{aligned}
$$

Σ is the covariance matrix

Review

- Review covariance
- Review Eigen vectors

Covariance Matrix

- Its a $d \times d$ matrix, $\Sigma[i, j]$ measures "covariance" of features i and j

$$
\Sigma[i, j]=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{x}_{t}[i]-\mu[i]\right)\left(\mathbf{x}_{t}[j]-\mu[j]\right)
$$

PCA: VARIANCE MAXIMIZATION

Covariance matrix:

$$
\Sigma=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{x}_{t}-\mu\right)\left(\mathbf{x}_{t}-\mu\right)^{\top}
$$

- Its a $d \times d$ matrix, $\Sigma[i, j]$ measures "covariance" of features i and j

$$
\Sigma[i, j]=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{x}_{t}[i]-\mu[i]\right)\left(\mathbf{x}_{t}[j]-\mu[j]\right)
$$

What are Eigen Vectors?

What are Eigen Vectors?

$$
x \mapsto A x
$$

What are Eigen Vectors?

$$
x \mapsto A x
$$

What are Eigen Vectors?

$$
x \mapsto A x
$$

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

What are Eigen Vectors?

$$
x \mapsto A x
$$

