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K-MEANS CLUSTERING

For all j ∈ [K], initialize cluster centroids r̂

0
j randomly and set m = 1

Repeat until convergence (or until patience runs out)
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General Ellipsoid
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ELLIPSOIDAL CLUSTERING

For all j ∈ [K], initialize cluster centroids r̂

0
j and ellipsoids ⌃̂0

j
randomly and set m = 1
Repeat until convergence (or until patience runs out)

1 For each t ∈ {1, . . . ,n}, set cluster identity of the point
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K-means: pitfalls

• Looks for spherical clusters 

• Of same radius 

• And with roughly equal number of points



Mixture Distribution
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• Pi models proportion of points belonging to each 
cluster 

• We update Pi as we go 

• Finally we expect Pi to contain proportion of points we 
expect in each cluster



TOWARDS HARD GAUSSIAN MIXTURE MODEL

For all j ∈ [K], initialize cluster centroids r̂

0
j , ellipsoids ⌃̂0

j and
initial proportions ⇡0 randomly and set m = 1
Repeat until convergence (or until patience runs out)

1 For each t ∈ {1, . . . ,n}, set cluster identity of the point
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Multivariate Gaussian
• Two parameters: 

• Mean  

• Covariance matrix     of size dxd
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HARD GAUSSIAN MIXTURE MODEL

For all j ∈ [K], initialize cluster centroids r̂

0
j , ellipsoids ⌃̂0

j and
initial proportions ⇡0 randomly and set m = 1
Repeat until convergence (or until patience runs out)

1 For each t ∈ {1, . . . ,n}, set cluster identity of the point

ĉm(xt) = arg max
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�Ĉm

j � �xt∈Ĉm
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Pitfall of Hard Assignment
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(SOFT) GAUSSIAN MIXTURE MODEL

For all j ∈ [K], initialize cluster centroids r̂

0
j and ellipsoids ⌃̂0

j
randomly and set m = 1
Repeat until convergence (or until patience runs out)

1 For each t ∈ {1, . . . ,n}, set cluster identity of the point
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Demo



How to choose K
• Elbow method:  

• plot Objective versus K, typically it monotonically decreases.  

• Pick point where there is a kink (explanation in variance is not as much) 

• Intuition: look at rate of change 

• Add to objective penalty + p(K) and minimize, where p increases with K   

• intuition we prefer smaller clusters 

•  Use prior knowledge to pick p 

• (AIC, BIC etc can been seen to be specific cases)


