Machine Learning for Data Science (CS4786) Lecture 7

Gaussian Mixture Models

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2017fa/

K-means Clustering

- For all $j \in[K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$ randomly and set $m=1$
- Repeat until convergence (or until patience runs out)
(1) For each $t \in\{1, \ldots, n\}$, set cluster identity of the point

$$
\hat{c}^{m}\left(\mathbf{x}_{t}\right)=\underset{j \in[K]}{\operatorname{argmin}}\left\|\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m-1}\right\|
$$

(2) For each $j \in[K]$, set new representative as

$$
\hat{\mathbf{r}}_{j}^{m}=\frac{1}{\left|\hat{C}_{j}^{m}\right|} \sum_{\mathbf{x}_{t} \in \hat{C}_{j}^{m}} \mathbf{x}_{t}
$$

(3) $m \leftarrow m+1$

General Ellipsoid

$$
\begin{aligned}
& d\left(\mathbf{x}, C_{j}\right)=\left(\mathbf{x}-\mathbf{r}_{j}\right)^{\top} \Sigma_{j}^{-1}\left(\mathbf{x}-\mathbf{r}_{j}\right) \\
& \Sigma_{j}=\frac{1}{\left|C_{j}\right|} \sum_{t \in C_{j}}\left(\mathbf{x}-\mathbf{r}_{j}\right)\left(\mathbf{x}_{t}-\mathbf{r}_{j}\right)^{\top}
\end{aligned}
$$

ElLIPSOIDAL CLUSTERING

- For all $j \in[K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$ and ellipsoids $\hat{\Sigma}_{j}^{0}$ randomly and set $m=1$
- Repeat until convergence (or until patience runs out)
(1) For each $t \in\{1, \ldots, n\}$, set cluster identity of the point

$$
\begin{gathered}
\hat{c}^{m}\left(\mathbf{x}_{t}\right)=\underset{j \in[K]}{\operatorname{argmin}} \frac{\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m-1}\right)^{\top}\left(\hat{\Sigma}^{m-1}\right)^{-1}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m-1}\right)}{d\left(\mathbf{x}_{t}, C_{j}\right)}
\end{gathered}
$$

(2) For each $j \in[K]$, set new representative as

$$
\hat{\mathbf{r}}_{j}^{m}=\frac{1}{\left|\hat{C}_{j}^{m}\right|} \sum_{\mathbf{x}_{t} \in \hat{C}_{j}^{m}} \mathbf{x}_{t} \quad \hat{\Sigma}^{m}=\frac{1}{\left|C_{j}\right|} \sum_{t \in C_{j}}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)^{\top}
$$

(3) $m \leftarrow m+1$

K-means: pitfalls

- Looks for spherical clusters
- Of same radius
- And with roughly equal number of points

Mixture Distribution

$$
\begin{array}{r}
\forall j \leq K, \pi(j) \geq 0 \\
\sum_{j=1}^{K} \pi(j)=1
\end{array}
$$

- Pi models proportion of points belonging to each cluster
- We update Pi as we go
- Finally we expect Pi to contain proportion of points we expect in each cluster

Towards Hard Gaussian Mixture Model

- For all $j \in[K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$, ellipsoids $\hat{\Sigma}_{j}^{0}$ and initial proportions π^{0} randomly and set $m=1$
- Repeat until convergence (or until patience runs out)
(1) For each $t \in\{1, \ldots, n\}$, set cluster identity of the point

$$
\begin{gathered}
\hat{c}^{m}\left(\mathbf{x}_{t}\right)=\underset{j \in[K]}{\operatorname{argmin}}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m-1}\right)^{\top}\left(\hat{\Sigma}^{m-1}\right)^{-1}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m-1}-\log \left(\pi_{j}^{m-1}\right)\right. \\
d\left(\mathbf{x}_{t}, C_{j}\right)
\end{gathered}
$$

(2) For each $j \in[K]$, set new representative as

$$
\hat{\mathbf{r}}_{j}^{m}=\frac{1}{\left|\hat{C}_{j}^{m}\right|} \sum_{\mathbf{x}_{t} \in \hat{C}_{j}^{m}} \mathbf{x}_{t} \quad \hat{\Sigma}^{m}=\frac{1}{\left|C_{j}\right|} \sum_{t \in C_{j}}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)^{\top} \quad \pi_{j}^{m}=\frac{\left|C_{j}^{m}\right|}{n}
$$

(3) $m \leftarrow m+1$

Multivariate Gaussian

- Two parameters:
- Mean $\mu \in \mathbb{R}^{d}$
- Covariance matrix Σ of size dxd

$$
p(x ; \mu, \Sigma)=(2 \pi)^{d / 2} \operatorname{det}(\Sigma)^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)
$$

Hard Gaussian Mixture Model

- For all $j \in[K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$, ellipsoids $\hat{\Sigma}_{j}^{0}$ and initial proportions π^{0} randomly and set $m=1$
- Repeat until convergence (or until patience runs out)
(1) For each $t \in\{1, \ldots, n\}$, set cluster identity of the point

$$
\begin{gathered}
\hat{\boldsymbol{c}}^{m}\left(\mathbf{x}_{t}\right)=\arg \max _{j \in[K]} p\left(\mathbf{x}_{t}, \hat{\mathbf{r}}_{j}^{m-1}, \hat{\Sigma}_{j}^{m-1}\right) \times \pi^{m}(j) \\
d\left(\mathbf{x}_{t}, C_{j}\right)
\end{gathered}
$$

(2) For each $j \in[K]$, set new representative as

$$
\hat{\mathbf{r}}_{j}^{m}=\frac{1}{\left|\hat{C}_{j}^{m}\right|} \sum_{\mathbf{x}_{t} \in \hat{C}_{j}^{m}} \mathbf{x}_{t} \quad \hat{\Sigma}_{j}^{m}=\frac{1}{\left|C_{j}\right|} \sum_{t \in C_{j}}\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)^{\top} \quad \pi_{j}^{m}=\frac{\left|C_{j}^{m}\right|}{n}
$$

(3) $m \leftarrow m+1$

Pitfall of Hard Assignment

(Soft) Gaussian Mixture Model

- For all $j \in[K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$ and ellipsoids $\hat{\Sigma}_{j}^{0}$ randomly and set $m=1$
- Repeat until convergence (or until patience runs out)
(1) For each $t \in\{1, \ldots, n\}$, set cluster identity of the point

$$
Q_{t}^{m}(j)=p\left(\mathbf{x}_{t}, \hat{\mathbf{r}}_{j}^{m-1}, \hat{\Sigma}_{j}^{m-1}\right) \times \pi^{m}(j)
$$

(2) For each $j \in[K]$, set new representative as

$$
\begin{aligned}
\hat{\mathbf{r}}_{j}^{m}=\frac{\sum_{t=1}^{n} Q_{t}(j) \mathbf{x}_{t}}{\sum_{t=1}^{n} Q_{t}(j)} \quad \hat{\Sigma}_{j}^{m}=\frac{\sum_{t=1}^{n} Q_{t}(j)\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)\left(\mathbf{x}_{t}-\hat{\mathbf{r}}_{j}^{m}\right)^{\top}}{\sum_{t=1}^{n} Q_{t}(j)} \\
\pi_{j}^{m}=\frac{\sum_{t=1}^{n} Q_{t}(j)}{n}
\end{aligned}
$$

(3) $m \leftarrow m+1$

Demo

How to choose K

- Elbow method:
- plot Objective versus K, typically it monotonically decreases.
- Pick point where there is a kink (explanation in variance is not as much)
- Intuition: look at rate of change
- Add to objective penalty $+\mathrm{p}(\mathrm{K})$ and minimize, where p increases with K
- intuition we prefer smaller clusters
- Use prior knowledge to pick p
- (AIC, BIC etc can been seen to be specific cases)

