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K-means: pitfalls

• Looks for spherical clusters 

• Of same radius 

• And with roughly equal number of points



• Can we design algorithm that can address these 
shortcomings?
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K-MEANS CLUSTERING

For all j ∈ [K], initialize cluster centroids r̂

0
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Repeat until convergence (or until patience runs out)
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ELLIPSOIDAL CLUSTERING
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HARD GAUSSIAN MIXTURE MODEL

For all j ∈ [K], initialize cluster centroids r̂

0
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j and
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Multivariate Gaussian
• Two parameters: 

• Mean  

• Covariance matrix     of size dxd

µ 2 Rd
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HARD GAUSSIAN MIXTURE MODEL

For all j ∈ [K], initialize cluster centroids r̂

0
j , ellipsoids ⌃̂0

j and
initial proportions ⇡0 randomly and set m = 1
Repeat until convergence (or until patience runs out)

1 For each t ∈ {1, . . . ,n}, set cluster identity of the point
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Pitfall of Hard Assignment
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(SOFT) GAUSSIAN MIXTURE MODEL

For all j ∈ [K], initialize cluster centroids r̂
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