Machine Learning for Data Science (CS4786) Lecture 5

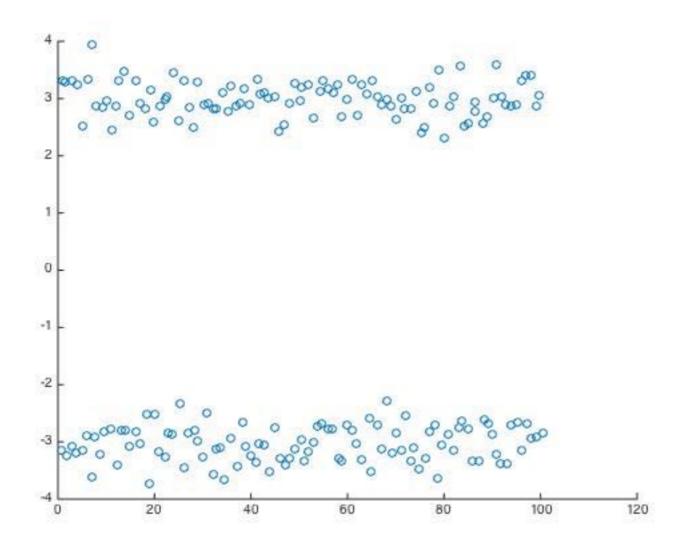
Gaussian Mixture Models

Course Webpage:

http://www.cs.cornell.edu/Courses/cs4786/2017fa/

Clustering demo

Two elongated ellipses



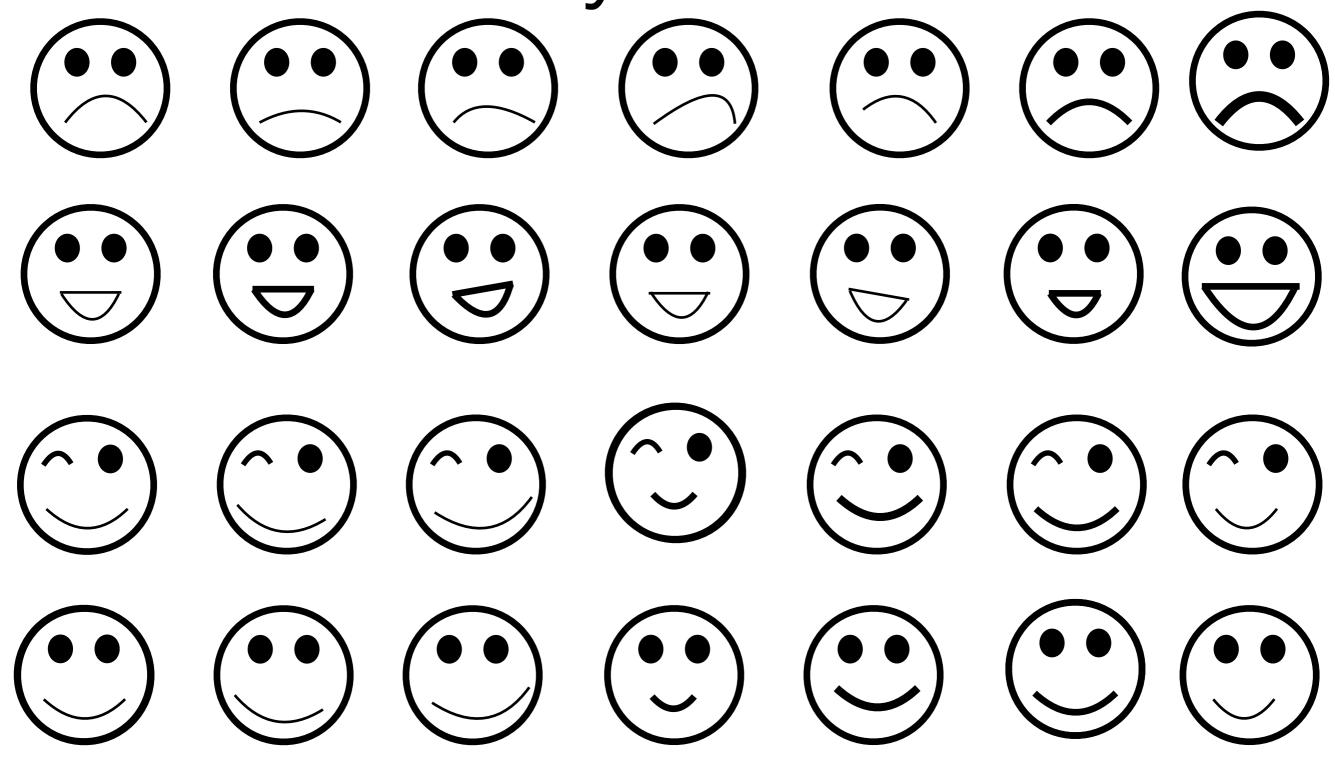
Iris dataset: Flowers

Iris-Setosa

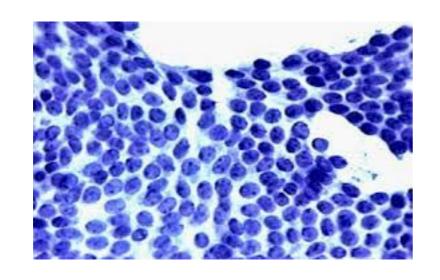
Iris-versicolor

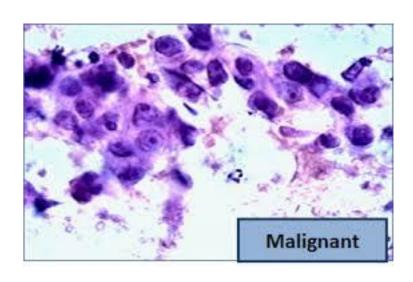
Iris-virginica

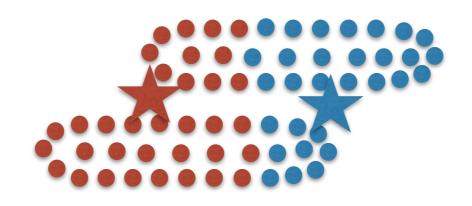
Smiley dataset

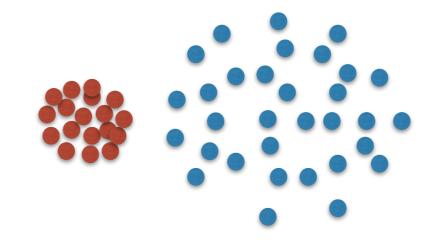


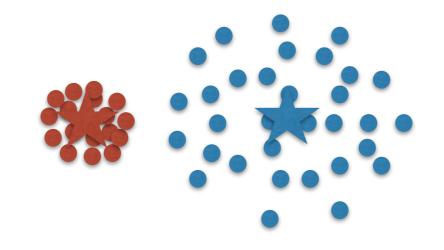
Wisconsin Breast Cancer dataset

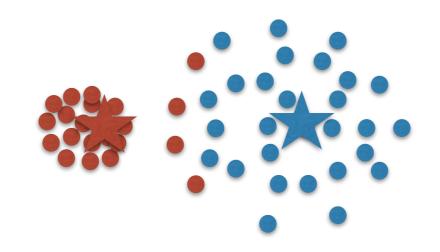


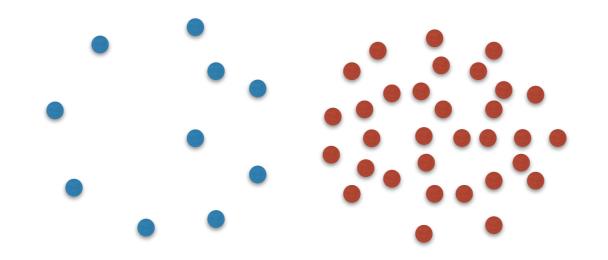


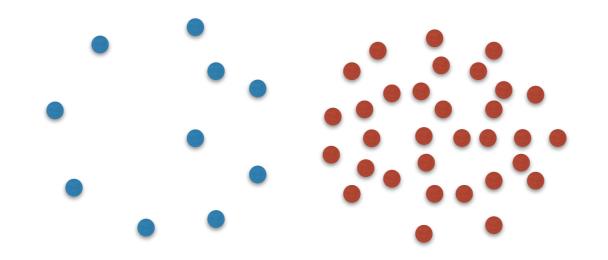


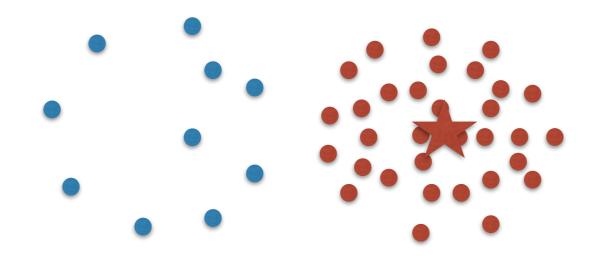


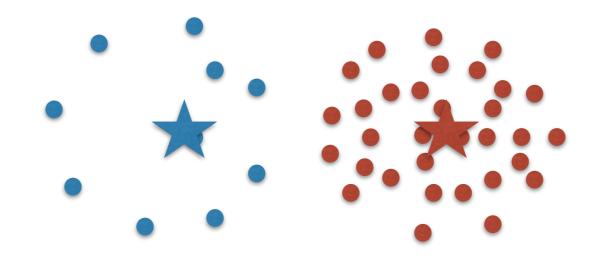


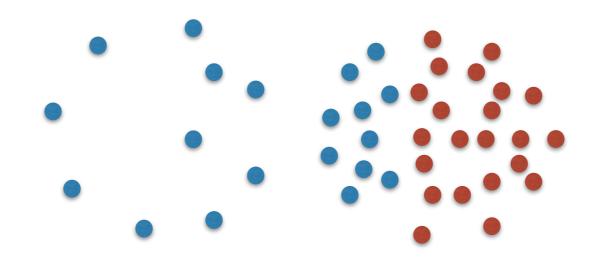


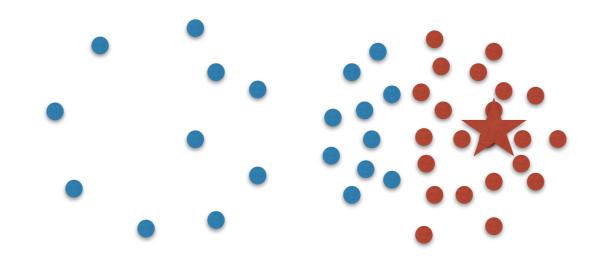


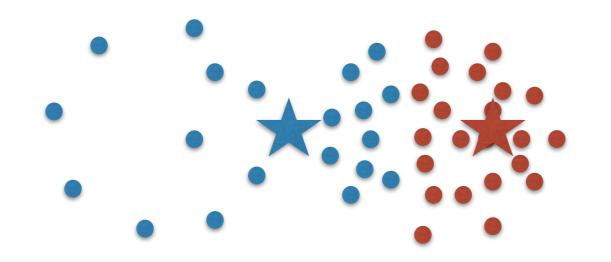








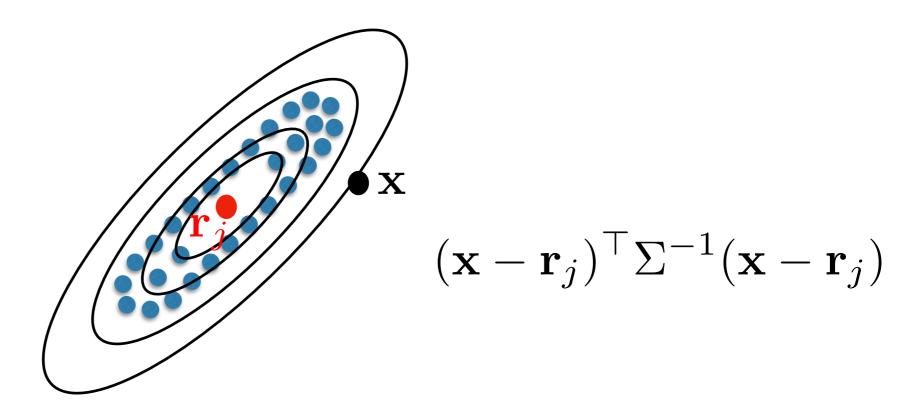




- Looks for spherical clusters
- Of same radius
- And with roughly equal number of points

 Can we design algorithm that can address these shortcomings?

Ellipsoid



$$\Sigma = \frac{1}{|C_j|} \sum_{t \in C_j} (\mathbf{x}_t - \mathbf{r}_j) (\mathbf{x}_t - \mathbf{r}_j)^{\top}$$

K-MEANS CLUSTERING

- For all $j \in [K]$, initialize cluster centroids $\hat{\mathbf{r}}_j^0$ randomly and set m = 1
- Repeat until convergence (or until patience runs out)
 - ① For each $t \in \{1, ..., n\}$, set cluster identity of the point

$$\hat{c}^m(\mathbf{x}_t) = \underset{j \in [K]}{\operatorname{argmin}} \|\mathbf{x}_t - \hat{\mathbf{r}}_j^{m-1}\|$$

② For each $j \in [K]$, set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{\mathbf{x}_t \in \hat{C}_j^m} \mathbf{x}_t$$

 $3 m \leftarrow m + 1$

Ellipsoidal Clustering

- For all $j \in [K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$ and ellipsoids $\hat{\Sigma}_{j}^{0}$ randomly and set m = 1
- Repeat until convergence (or until patience runs out)
 - ① For each $t \in \{1, ..., n\}$, set cluster identity of the point

$$\hat{c}^{m}(\mathbf{x}_{t}) = \underset{j \in [K]}{\operatorname{argmin}} \quad (\mathbf{x}_{t} - \hat{\mathbf{r}}_{j}^{m-1})^{\top} \left(\hat{\Sigma}^{m-1}\right)^{-1} \left(\mathbf{x}_{t} - \hat{\mathbf{r}}_{j}^{m-1}\right)$$

② For each $j \in [K]$, set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{\mathbf{x}_t \in \hat{C}_j^m} \mathbf{x}_t \qquad \hat{\Sigma}^m = \frac{1}{|C_j|} \sum_{t \in C_j} (\mathbf{x}_t - \hat{\mathbf{r}}_j^m) (\mathbf{x}_t - \hat{\mathbf{r}}_j^m)^{\top}$$

 $m \leftarrow m + 1$

- Looks for spherical clusters
- Of same radius
- And with roughly equal number of points

HARD GAUSSIAN MIXTURE MODEL

- For all $j \in [K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$, ellipsoids $\hat{\Sigma}_{j}^{0}$ and initial proportions π^{0} randomly and set m = 1
- Repeat until convergence (or until patience runs out)
 - ① For each $t \in \{1, ..., n\}$, set cluster identity of the point

$$\hat{c}^m(\mathbf{x}_t) = \underset{j \in [K]}{\operatorname{argmin}} \quad (\mathbf{x}_t - \hat{\mathbf{r}}_j^{m-1})^{\top} \left(\hat{\mathbf{\Sigma}}^{m-1}\right)^{-1} (\mathbf{x}_t - \hat{\mathbf{r}}_j^{m-1}) - \log(\pi_j^{m-1})$$

2 For each $j \in [K]$, set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{\mathbf{x}_t \in \hat{C}_j^m} \mathbf{x}_t \qquad \hat{\Sigma}^m = \frac{1}{|C_j|} \sum_{t \in C_j} (\mathbf{x}_t - \hat{\mathbf{r}}_j^m) (\mathbf{x}_t - \hat{\mathbf{r}}_j^m)^{\top} \qquad \pi_j^m = \frac{|C_j^m|}{n}$$

 $m \leftarrow m + 1$

Multivariate Gaussian

- Two parameters:
 - Mean $\mu \in \mathbb{R}^d$
 - Covariance matrix \sum of size dxd

$$p(x; \mu, \Sigma) = (2\pi)^{d/2} \det(\Sigma)^{-1/2} \exp\left(-\frac{1}{2}(x - \mu)^{\top} \Sigma^{-1}(x - \mu)\right)$$

Multivariate Gaussian

- Two parameters:
 - Mean $\mu \in \mathbb{R}^d$
 - Covariance matrix Σ of size dxd

$$p(x; \mu, \Sigma) = (2\pi)^{d/2} \det(\Sigma)^{-1/2} \exp\left(-\frac{1}{2}(x - \mu)^{\top} \Sigma^{-1}(x - \mu)\right)$$

0.4

0.2

HARD GAUSSIAN MIXTURE MODEL

- For all $j \in [K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{0}$, ellipsoids $\hat{\Sigma}_{j}^{0}$ and initial proportions π^{0} randomly and set m = 1
- Repeat until convergence (or until patience runs out)
 - ① For each $t \in \{1, ..., n\}$, set cluster identity of the point

$$\hat{c}^m(\mathbf{x}_t) = \underset{j \in [K]}{\operatorname{argmin}} \quad p(\mathbf{x}_t, \hat{\mathbf{r}}_j^{m-1}, \hat{\Sigma}^{m-1}) \times \pi^m(j)$$

② For each $j \in [K]$, set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{\mathbf{x}_t \in \hat{C}_j^m} \mathbf{x}_t \qquad \hat{\Sigma}^m = \frac{1}{|C_j|} \sum_{t \in C_j} (\mathbf{x}_t - \hat{\mathbf{r}}_j^m) (\mathbf{x}_t - \hat{\mathbf{r}}_j^m)^{\top} \qquad \pi_j^m = \frac{|C_j^m|}{n}$$

(SOFT) GAUSSIAN MIXTURE MODEL

- For all $j \in [K]$, initialize cluster centroids $\hat{\mathbf{r}}_j^0$ and ellipsoids $\hat{\Sigma}_j^0$ randomly and set m = 1
- Repeat until convergence (or until patience runs out)
 - ① For each $t \in \{1, ..., n\}$, set cluster identity of the point

$$Q_t^m(j) = p(\mathbf{x}_t, \hat{\mathbf{r}}_j^{m-1}, \hat{\Sigma}^{m-1}) \times \pi^m(j)$$

② For each $j \in [K]$, set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{\sum_{t=1}^n Q_t(j)\mathbf{x}_t}{\sum_{t=1}^n Q_t(j)} \qquad \hat{\Sigma}^m = \frac{\sum_{t=1}^n Q_t(j)(\mathbf{x}_t - \hat{\mathbf{r}}_j^m)(\mathbf{x}_t - \hat{\mathbf{r}}_j^m)}{\sum_{t=1}^n Q_t(j)}$$

$$\pi_j^m = \frac{\sum_{t=1}^n Q_t(j)}{n}$$