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REPRESENTING DATA AS FEATURE VECTORS

How do we represent data?

Each data-point often represented as vector referred to as feature
vector

Eg. text document represented by vector in which each coordinate
represents a word and value represents number of times the word
occurred in the document

Eg. Image represented as a vector where each coordinate
represents a pixel and value represents the grayscale value of that
pixel
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CLUSTERING
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EXAMPLES

What are the clusters?
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CLUSTERING

Grouping sets of data points s.t.

points in same group are similar

points in different groups are dissimilar

A form of unsupervised classification where 
there are no predefined labels



SOME NOTATIONS

Kary clustering is a partition of x1, . . . ,xn into K groups

For now assume the magical K is given to use

Clustering given by C1, . . . ,CK, the partition of data points.

Given a clustering, we shall use c(xt) to denote the cluster identity
of point xt according to the clustering.

Let nj denote �Cj�, clearly ∑K
j=1 nj = n.



How do we formalize a good 
clustering objective?



Given two clustering {C1, . . . , CK} (or c) and {C 0
1, . . . , C

0
K} (or c0)

How do we decide which is better?

How do we formalize?

Say dissimilarity(xt,xs) measures dissimilarity between xt & xs

points in same cluster are not dissimilar
points in different clusters are dissimilar



CLUSTERING CRITERION

Minimize total within-cluster dissimilarity
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How different are these criteria?



CLUSTERING CRITERION

minimizing M1 ≡maximizing M2

minimizing M5 ≡minimizing M6



CLUSTERING

Multiple clustering criteria all equally valid
Different criteria lead to different algorithms/solutions
Which notion of distances or costs we use matter



Lets Build an Algorithm

CLUSTERING CRITERION
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SINGLE LINK CLUSTERING

Initialize n clusters with each point xt to its own cluster

Until there are only K clusters, do

1 Find closest two clusters and merge them into one cluster

2 Update between cluster distances (called proximity matrix)

dissimilarity(Ci, Cj) = min

t2Ci,s2Cj

dissimilarity(xt, xs)
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SINGLE LINK OBJECTIVE

Objective for single-link:

M4 = min
xs,xt∶c(xs)≠c(xt) �xs − xt�22

Single link clustering is optimal for above objective!
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SINGLE LINK OBJECTIVE

Objective for single-link:

M4 = min
xs,xt∶c(xs)≠c(xt) �xs − xt�22

Single link clustering is optimal for above objective!

Say c is solution produced by single-link clustering

Proof:

Say c0 6= c then,

9 t, s s.t. c0(xt) 6= c

0(xs) but c(xt) = c(xs)
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CLUSTERING CRITERION

Minimize average dissimilarity within cluster
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CLUSTERING CRITERION

minimizing M1 ≡maximizing M2

minimizing M5 ≡minimizing M6



Lets build an Algorithm

where rj =
1

|Cj |
X

xt2Cj

xt

CLUSTERING CRITERION

Minimize within-cluster variance: r

j

= 1
n

j

∑
x∈C

j

x

M5 = K�
j=1
�

x

t

∈C
j

�
x

t

− r

j

�22
Minimize within-cluster weighted scatter

M6 = K�
j=1

1
�C

j

� �
x

s

∈C
j

��� �
x

t

∈C
j

,x
s

≠x

t

�x
s

− x

t

�22���
= K�

j=1

1
�C

j

� �
x

s

∈C
j

dissimilarity �x
s

,C
j

�

t

t



K-MEANS CLUSTERING

For all j ∈ [K], initialize cluster centroids r̂

1
j randomly and set m = 1

Repeat until convergence (or until patience runs out)
1 For each t ∈ {1, . . . ,n}, set cluster identity of the point

ĉm(xt) = argmin
j∈[K]

�xt − r̂

m
j �

2 For each j ∈ [K], set new representative as

r̂

m+1
j = 1

�Ĉm
j � �xt∈Ĉm

j

xt

3 m← m + 1

t


