
Machine Learning for Data Science (CS 4786)

Lecture 16-17: EM Algorithm: Why EM works!, EM for Gaussian Mixture Models and Mixture of Multinomials

The text in black outlines high level ideas. The text in blue provides simple math-
ematical details to “derive” or get to the algorithm or method. The text in red are
mathematical details for those who are interested.

1 EM Algorithm

Iteratively we repeat E-step (expectation step) and M-step MAximization step starting with θ(0) a
random initialization for parameter θ. The following are the E and M steps.

1.1 E-step

On iteration i, for each data point t ∈ [n], set

Q
(i)
t (ct) = P (ct|xt, θ(i−1)) ∝ p(xt|ctθ(i−1))× P (ct|θ(i−1))

1.2 M-step for GMM

For the M-step (for MLE) we would like to find

θ = argmax
θ∈Θ

n∑
t=1

K∑
ct=1

Q
(i)
t (ct) logP (xt, ct|θ)

For MAP we add in a penalty of + logP (θ) to the above maximization problem.

2 EM Algorithm: Why it works?

Log likelihood only decreases after one iteration of EM algorithm. Why?
We will show below that EM algorithm can never lead to a worsening of the objective in any

step and can only imrpvie likelihood.

logP (x1, . . . , xn|θ(i+1)) =

n∑
t=1

logP (xt|θ(i+1)) (x’s drawn independently)

=
n∑
t=1

log

(
K∑
ct=1

P (xt, ct|θ(i+1))

)
(marginalizing over ct’s)

=
n∑
t=1

log

(
K∑
ct=1

Q(i+1)(ct)

Q(i+1)(ct)
P (xt, ct|θ(i+1))

)

1

Logarithm is a concave function and by Jensen’s inequality log(E[X]) ≥ E[log(X)] for any R.V.
X. Treat the term in red as the random variable and the probability distribution is specified by
Q(i+1), now using Jensen,

≥
n∑
t=1

K∑
ct=1

Q(i+1)(ct) log

(
P (xt, ct|θ(i+1))

Q(i+1)(ct)

)

=
n∑
t=1

K∑
ct=1

Q(i+1)(ct) log
(
P (xt, ct|θ(i+1))

)
−

n∑
t=1

K∑
ct=1

Q(i+1)(ct) log
(
Q(i+1)(ct)

)
Since in M-step θ(i+1) is exactly the maximizer of

∑n
t=1

∑K
ct=1Q

(i+1)(ct) log
(
P (xt, ct|θ(i+1))

)
, we

conclude that this term is larger than
∑n

t=1

∑K
ct=1Q

(i+1)(ct) log
(
P (xt, ct|θ(i))

)
and so

≥
n∑
t=1

K∑
ct=1

Q(i+1)(ct) log
(
P (xt, ct|θ(i))

)
−

n∑
t=1

K∑
ct=1

Q(i+1)(ct) log
(
Q(i+1)(ct)

)
Now note that P (xt, ct|θ(i)) = P (ct|xt, θ(i))P (xt|θ(i)) = Q(i+1)(ct)P (xt|θ(i)) and so,

=

n∑
t=1

K∑
ct=1

Q(i+1)(ct) log
(
P (xt|θ(i))×Q(i+1)(ct)

)
−

n∑
t=1

K∑
ct=1

Q(i+1)(ct) log
(
Q(i+1)(ct)

)
=

n∑
t=1

logP (xt|θ(i))

= logP (x1, . . . , xn|θ(i))

Hence we have shown that running the EM algorithm yields, logP (x1, . . . , xn|θ(i)) ≤ logP (x1, . . . , xn|θ(i+1)),
that is the Likelihood value never decreases and could only improve.

3 Gaussian Mixture Models

Each θ ∈ Θ consist of mixture distribution π which is a distribution over the choices of the K clus-
ters, µ1, . . . , µK ∈ Rd the choices of the K means for the corresponding gaussians and Σ1, . . . ,ΣK

the choices of the K covariance matrices. The latent variables are c1, . . . , cn the cluster assignments
for the n points and x1, . . . , xn are the n observations.

3.1 E-step

On iteration i, for each data point t ∈ [n], set

Q
(i)
t (ct) = P (ct|xt, θ(i−1))

Note that

Q
(i)
t (ct) = P (ct|xt, θ(i−1))

∝ p(xt|ctθ(i−1))× P (ct|θ(i−1))

∝ 1√
(2π)d|Σct |

exp
(
−(xt − µct)>Σct(xt − µct)/2

)
πct

2

3.2 M-step for GMM

For the M-step (for MLE) we would like to find

θ = argmax
θ∈Θ

n∑
t=1

K∑
ct=1

Q
(i)
t (ct) logP (xt, ct|θ)

To this end note that

n∑
t=1

K∑
ct=1

Q
(i)
t (ct) logP (xt, ct|θ) =

n∑
t=1

K∑
k=1

Q
(i)
t (k) (log φ(xt|µk,Σk) + log πk)

=

n∑
t=1

K∑
k=1

Q
(i)
t (k)

(
1

2
log

(
1

(2 ∗ 3.14)d|Σk|

)
− 1

2
(xt − µk)>Σ−1

k (xt − µk) + log πk

)

=
n∑
t=1

K∑
k=1

Q
(i)
t (k)

(
−1

2
log det(Σk)−

1

2
(xt − µk)>Σ−1

k (xt − µk) + log πk

)
+ constant terms

For notational convenience define:

L(µ1:K ,Σ1:K , π) =
n∑
t=1

K∑
k=1

Q
(i)
t (k)

(
−1

2
log det(Σk)−

1

2
(xt − µk)>Σ−1

k (xt − µk) + log πk

)
Our goal is to find parameters that maximize L(µ1:K ,Σ1:K , π).

M-step for mean: To optimize with respect to mean we take derivative and equate to 0,

∂

∂µk
L(µ1:K ,Σ1:K , π) = −1

2

∂

∂µk

(
n∑
t=1

Q
(i)
t (k)(xt − µk)>Σ−1

k (xt − µk)

)

= −
n∑
t=1

Q
(i)
t (k)Σ−1

k (xt − µk) = −Σ−1
k

(
n∑
t=1

Q
(i)
t (k)(xt − µk)

)
To maximize over µk we set derivative equal to 0. Hence

n∑
t=1

Q
(i)
t (k)(xt − µk) =

n∑
t=1

Q
(i)
t (k)xt − µk

(
n∑
t=1

Q
(i)
t (k)

)
= 0

Or equivallently:

µk =

∑n
t=1Q

(i)
t (k)xt∑n

t=1Q
(i)
t (k)

M-step for mixture distribution: Since we want to optimize over π subject to the constraint∑K
k=1 πk = 1 (ie. its a distribution), we do so by introducing Lagrange variables. That is we want

to optimize the following term w.r.t. πk and λ

L(µ1:K ,Σ1:K , π) + λ(1−
K∑
k=1

πk)

3

Hence taking derivative of above w.r.t. π we get,

∂

∂πk

(
L(µ1:K ,Σ1:K , π) + λ(1−

K∑
k=1

πk)

)
=

∂

∂πk
L(µ1:K ,Σ1:K , π)− λ

But,

∂

∂πk
L(µ1:K ,Σ1:K , π) =

∂

∂πk

n∑
t=1

Q
(i)
t (k) log(πk) =

∑n
t=1Q

(i)
t (k)

πk

Hence,

∂

∂πk

(
L(µ1:K ,Σ1:K , π) + λ(1−

K∑
k=1

πk) +

K∑
i=1

λiπi

)
=

∑n
t=1Q

(i)
t (k)

πk
− λ

Setting derivative to 0 we discover that

πk ∝
n∑
t=1

Q
(i)
t (k)

Since π needs to be a valid distribution, this yields that

πk =

∑n
t=1Q

(i)
t (k)∑K

k=1

∑n
t=1Q

(i)
t (k)

However notice that since Q
(i)
t is a distribution over K clusters,

∑K
k=1

∑n
t=1Q

(i)
t (k) =

∑n
t=1 1 = n.

Hence,

πk =

∑n
t=1Q

(i)
t (k)

n

M-step for Covariance: This one needs being able to take derivative w.r.t. matrices and so I
will only sketch the proof here. Let us consider optimizing w.r.t. some Σk. It makes the problem
easier if we instead think of the problem as optimizing over Σ−1

k and then invert the solution.

Here are two facts that come in handy:

∂

∂X
log det(X−1) = −X−1

and for any vector v,
∂

∂X
v>Xv = vv>

Now note that

∂

∂Σk
L(µ1:K ,Σ1:K , π) =

∂

∂Σk

(
n∑
t=1

Q
(i)
t (k)

(
−1

2
log det(Σk)−

1

2
(xt − µk)>Σ−1

k (xt − µk)
))

=

(
n∑
t=1

Q
(i)
t (k)

(
1

2
(Σ−1

k)−1 − 1

2
(xt − µk)(xt − µk)>

))

4

Hence equating to 0 we get that

Σk =

∑n
t=1Q

(i)
t (k)(xt − µk)(xt − µk)>∑n

t=1Q
(i)
t (k)

that is the weighted sample variance. (there is a bit of a fudge here since µk is also an
optimiation variable. But we skip the details of this for now.)

3.3 EM for Mixture Models

For any mixture model with π as mixture distribution, and any arbitrary parameterization of
likelihood of data given cluster assignment, one can write down a more detailed form for EM
algorithm.

E-step On iteration i, for each data point t ∈ [n], set

Q
(i)
t (ct) = P (ct|xt, θ(i−1))

Note that

Q
(i)
t (ct) = P (ct|xt, θ(i−1))

∝ p(xt|ct, θ(i−1))× P (ct|θ(i−1))

∝ p(xt|ct, θ(i−1))× P (ct|θ(i−1))

=
p(xt|ct, θ(i−1)) · π(i−1)[ct]∑K
ct=1 p(xt|ct, θ(i−1)) · π(i−1)[ct]

So all we need to fill out the n×K sized Q matrix is to have a current guess at π and the ability
to compute p(xt|ct, θ(i−1)) up to multiplicative factor.

θ = argmax
θ∈Θ

n∑
t=1

K∑
k=1

Q
(i)
t (k) logP (xt, ct = k|θ)

= argmax
θ∈Θ

n∑
t=1

K∑
k=1

Q
(i)
t (k) logP (xt|ct = k, θ)× P (ct = k|θ)

= argmax
θ∈Θ

n∑
t=1

K∑
k=1

Q
(i)
t (k) log (P (xt|ct = k, θ)× π[k])

= argmax
θ∈Θ

n∑
t=1

K∑
k=1

Q
(i)
t (k) log (P (xt|ct = k, θ)) +

n∑
t=1

K∑
k=1

Q
(i)
t (k) log (π[k])

Using Θ\π to denote the set of parameters excluding π,

= argmax
θ∈Θ\π ,π

(
n∑
t=1

K∑
k=1

Q
(i)
t (k) log (P (xt|ct = k, θ)) +

n∑
t=1

K∑
k=1

Q
(i)
t (k) log (πk)

)

=

(
argmax
θ∈Θ\π

(
n∑
t=1

K∑
k=1

Q
(i)
t (k) log (P (xt|ct = k, θ))

)
, argmax

π

(
n∑
t=1

K∑
k=1

Q
(i)
t (k) log (πk)

))

5

Notice that the term in red is exactly the optimization we solved for in GMM example. We know
this already! The solution is:

πk =

∑n
t=1Q

(i)
t (k)

n

and this is the same for any mixture model.

On the other hand, the optimization problem,

argmax
θ∈Θ\π

(
n∑
t=1

K∑
k=1

Q
(i)
t (k) log (P (xt|ct = k, θ))

)

is simply a weighted version of MLE when our observation includes ct’s the hidden or latent vari-
ables. In the M-step, this is the only portion that changes the mixture distribution solution has
same form always.

4 Mixture of Multinomials

Each θ ∈ Θ consist of mixture distribution π which is a distribution over the choices of theK clusters
or types, p1, . . . , pK are K distributions over the d items. The latent variables are c1, . . . , cn the
cluster assignments for the n points indicating that the tth data point was drawn using distribution
pct . x1, . . . , xn are the n observations.

Story: You own a grocery store and multiple customers walk in to your store and buy stuff. You
want group customers into K group based on distribution over the d products/choices in your store.
Think of customers as being independently drawn and they each belong to one of K groups. We
will first start with a simple scenario and build up to a more general one. To start with, say each
day a customer walks in to your store and buys m = 1 product. The generative story then is that
we first draw customer type ct ∼ π from a mixture distribution π, next associated with type ct,
there is a distribution pct over products the customer would buy. We draw xt ∈ [d] the product the
customer bought as xt ∼ pct . That is

p(xt|ct = k, θ) = pct [xt]

Next we can move to a slightly more complex scenario where the customer on every round buys
(fixed) m > 1 products by drawing xt as m samples from the multinomial distribution. That is,

p(xt|ct = k, θ) =
m!

xt[1]! · . . . · xt[d]!
pk[1]xt[1] · . . . · pk[d]xt[d]

where xt[j] indicates the amount of product j bought by the customer t.

6

4.1 Mixture of Multinomials (Primer m = 1)

E-step On iteration i, for each data point t ∈ [n], set

Q
(i)
t (ct) =

p(xt|ct, θ(i−1)) · π(i−1)[ct]∑K
ct=1 p(xt|ct, θ(i−1)) · P (ct|θ(i−1))

=
p

(i−1)
ct [xt] · π(i−1)[ct]∑K

ct=1 p(xt|ct, θ(i−1)) · π(i−1)[ct]

M-step As we already saw, we set

πk =

∑n
t=1Q

(i)
t (k)

n

Now as for the remaining parameters, we want to maximize

argmax
p1,...,pK

(
n∑
t=1

K∑
k=1

Q
(i)
t (k) log (pk[xt])

)

Define L(p1, . . . , pK) =
∑n

t=1

∑K
k=1Q

(i)
t (k) log (pk[xt]). We want to optimize L(p1, . . . , pK)

w.r.t. p1, . . . , pk s.t. each pk is a valid probability distribution over {1, . . . , d}. As an exam-
ple, to find the optimal pk, we want to optimize over pk subject to the constraint

∑d
j=1 pk[j] = 1

(ie. its a distribution), we do so by introducing Lagrange variables. That is we find pk[j]’s by
taking derivative and equating to 0 the following Lagrangian objective,

L(p1, . . . , pK) + λk(1−
d∑
j=1

pk[j])

Taking derivative and equating to 0, we want to find pk s.t.,

n∑
t=1

Q
(i)
t (k)

1

pk[xt]
− λk = 0

In other words, for every j ∈ [d], ∑
t:xt=j

Q
(i)
t (k)

1

pk[j]
− λk = 0

Hence we conclude that
pk[j] ∝

∑
t:xt=j

Q
(i)
t (k)

Hence,

pk[j] =

∑
t:xt=j

Q
(i)
t (k)∑n

t=1Q
(i)
t (k)

Thus for the M-step when we are dealing with the mixture model with exactly m = 1 purchase
on every round, we get that, for every k ∈ [K] and every j ∈ [d],

pk[j] =

∑
t:xt=j

Q
(i)
t (k)∑n

t=1Q
(i)
t (k)

7

4.2 Mixture of Multinomials (m > 1)

E-step On iteration i, for each data point t ∈ [n], set

Q
(i)
t (ct) =

p(xt|ct, θ(i−1)) · π(i−1)[ct]∑K
k=1 p(xt|k, θ(i−1)) · P (k|θ(i−1))

=
pct [1]xt[1] · . . . · pct [d]xt[d] · π(i−1)[ct]∑K
ct=1 pct [1]xt[1] · . . . · pct [d]xt[d] · π(i−1)[k]

M-step For mixture distribution, as usual,

πk =

∑n
t=1Q

(i)
t (k)

n

Now as for the remaining parameters, we want to maximize

argmax
p1,...,pK

(
n∑
t=1

K∑
k=1

Q
(i)
t (k) log (P (xt|ct = k, θ))

)

= argmax
p1,...,pK

(
n∑
t=1

K∑
k=1

Q
(i)
t (k) log

(
pk[1]xt[1] · . . . · pk[d]xt[d]

))

= argmax
p1,...,pK

 n∑
t=1

K∑
k=1

Q
(i)
t (k)

d∑
j=1

xt[j] log (pk[j])

Again to solve this, define L(p1, . . . , pK) =

∑n
t=1

∑K
k=1Q

(i)
t (k)

∑d
j=1 xt[j] log (pk[j]). We want

to optimize L(p1, . . . , pK) w.r.t. p1, . . . , pk s.t. each pk is a valid probability distribution over
{1, . . . , d}. As an example, to find the optimal pk, we want to optimize over pk subject to the
constraint

∑d
j=1 pk[j] = 1 (ie. its a distribution), we do so by introducing Lagrange variables. That

is we find pk[j]’s by taking derivative and equating to 0 the following Lagrangian objective,

L(p1, . . . , pK) + λk(1−
d∑
j=1

pk[j])

Taking derivative and equating to 0, we want to find pk s.t.,

n∑
t=1

Q
(i)
t (k)

d∑
j=1

xt[j]
1

pk[j]
− λk = 0

In other words, for every j ∈ [d],

n∑
t=1

Q
(i)
t (k)

xt[j]

pk[j]
− λk = 0

Hence we conclude that

pk[j] ∝
n∑
t=1

Q
(i)
t (k)xt[j]

8

Hence,

pk[j] =

∑n
t=1Q

(i)
t (k)xt[j]∑d

j=1

∑n
t=1Q

(i)
t (k)xt[j]

=

∑n
t=1Q

(i)
t (k)xt[j]∑n

t=1Q
(i)
t (k)

(∑d
j=1 xt[j]

) =

∑n
t=1Q

(i)
t (k)xt[j]

m
∑n

t=1Q
(i)
t (k)

9

