
Machine Learning for Data Science (CS 4786)

Lectures 11-12: Canonical Correlation Analysis

The text in black outlines high level ideas. The text in blue provides simple math-
ematical details to “derive” or get to the algorithm or method. The text in red are
mathematical details for those who are interested.

1 Motivation

Lets motivate Canonical Correlation Analysis through an example. Say we are interested in the
task of speech recognition, that is automatically converting the waveform received by a microphone
to text. What we have at our disposal is video of people speaking, that is both the visual image
data and the audio data. Of course for speech recognition we would primarily use the audio
data. However consider the scenario where apart from the person speaking, we also have some
background noise, perhaps some music playing in the background. Now the visual data at our
disposal contains information relevant to the speech such as lip movement and facial expressions
of the person speaking. It also may not contain information that relates to the background noise
which is only a part of the audio data.

In this scenario, given that the information from the data we are interested in is common to
both the views, the hope is that one could use the visual data to filter or clean the audio data to
get rid of the noise that is specific only to the audio data. This type of scenario is exactly where
techniques like Canonical Correlation Analysis are useful. More generally whenever we have two
views of the same data points and the information we care about is the information that is contained
in both these view (ie. we have redundancy in the views), we can hope to use this redundancy to
reduce noise in either one or both the views and obtain a low dimensional representation of the
data consisting of mainly the redundant information.

Another example of when these techniques are of practical use is when we have multiple choices
of feature extraction techniques which we believe all work well. In this scenario, we could blindly
concatenate these extracted feature to form a single feature, but alternatively if we believe that all
these extracted features are individually good for the task, then we can try to use techniques like
Canonical Correlation Analysis to only extract the redundant information amongst these features
thus reducing noise that is individual to each of the feature extraction process.

2 Two View Compression Problem

We are provided with pairs of data points (x1,x
′
1), . . . , (xn,x

′
n) where each xt ∈ Rd is a d-

dimensional vector and x′t ∈ Rd′ is a d′-dimensional vector. Think of xt and x′t as being two-views
of the same data. For instance, if we have video data, xt might be features corresponding to the
image at some point in time while x′t could be the associated audio data for that same point in
time.
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The goal is to compress point x1, . . . ,xn into vectors y1, . . . ,yn ∈ RK and points x′1, . . . ,x
′
n into

vectors y′1, . . . ,y
′
n ∈ RK so that we retain the information common to both the views. Again we

shall use linear transformation of data.

Of course the key question at hand is how do we find appropriate linear transformations for the
two views that tend to retain as much redundant information between the two views?

3 Canonical Correlation Analysis

To start with lets say we want to find a one dimensional linear projection of the points in each view.
That is we want to find w1 ∈ Rd and v1 ∈ Rd′ such that the numbers y1, . . . ,yn and y′1, . . . ,y

′
n

retain as much of the redundant information between views 1 and 2.
A first sketch idea would be to find these directions such that the covariance between y1, . . . ,yn

and y′1, . . . ,y
′
n is maximized. That is to maximize
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1

n
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However note that the issue with this is that the two views are two possibly completely different
types of sources. One might measure in meters and other is kilometers or worse yet we might be
comparing distance measurements to amplitude etc. The problem with maximizing covariance is
that it is scale sensitive. So if some coordinate has high variance or scale then this direction will
dominate covariance.

So the idea in PCA is to maximize not covariance but rather covariance normalized by variance.
within each projection. That is maximize correlation coefficient given by
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Now however note that yt’s and y′t’s scale linearly with w1 and v1 respectively. That is, if we
scale w1 to αw1 then yt scales by α too. Further, note that the term Corr(Y, Y ′) does not change
if we scale all yt’s or y′t’s as the α-scaling in numerator is canceled by the scaling in denomi-

nator. Hence we can always scale w1 and v1 appropriately so that 1
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= 1. Hence the first directions of CCA w1 and v1 can be written as the

ones that maximize
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Writing this explicitly,

w1,v1 = argmax
w1,v1
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which can be rewritten as:

w1,v1 = argmax
w1,v1
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Let µ = 1
n

∑n
t=1 xt and µ′ = 1

n

∑n
t=1 x

′
t. We can rewrite the above as

w1,v1 = argmax
w1,v1
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Using the fact that (a>b)(c>d) = a>(bc>)d and also noting that since c>d = d>c, realizing that
(a>b)(c>d) = a>(bd>)c we can rewrite the above as:

w1,v1 = argmax
w1,v1
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hence we have

w1,v1 = argmax
w1,v1

w>1

(
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Now note that Σ2,2 = 1
n

∑n
t=1(x

′
t − µ′)(x′t − µ′)> is covariance matrix in view 2,

Σ1,1 =
(
1
n

∑n
t=1(xt − µ)(xt − µ)>

)
is covariance matrix for view 1

and Σ1,2 =
(
1
n

∑n
t=1(xt − µ)(x′t − µ′)>

)
is the covariance matrix between views 1 and 2.

Hence we have

w1,v1 = argmax
w1,v1

w>1 Σ1,2v1

s.t. w>1 Σ1,1w1 = v>1 Σ2,2v1 = 1
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Now to solve the optimization problem we use Lagrange multipliers. We want to optimize

w1,v1 = argmax
w1,v1

w>1 Σ1,2v1 + λ∗1(1−w>1 Σ1,1w1) + λ∗2(1− v>1 Σ2,2v1)

Taking derivative and equating to 0 for each of w1 and v1 we find,

Σ1,2v1 = λ∗1Σ1,1w1 & Σ2,1w1 = λ∗1Σ2,2v1 (1)

However we know that w>1 Σ1,1w1 = 1 and so multiplying the first equation above by w>1 from the
right we get,

w>1 Σ1,2v1 = λ∗1

Similarly, since v>1 Σ2,2v1 = 1 and so multiplying the second equation above by v>1 from the right
we get,

v>1 Σ2,1w1 = λ∗2

Hence we conclude that λ∗2 = v>1 Σ2,1w1 = w>1 Σ1,2v1 = λ∗1 = λ∗ Finally, note again that from Eq.
1 (the second one), multiplying both size by Σ−12,2, we have Σ−12,2Σ2,1w1 = λ∗v1. Using this in the
first equation in (1) we find that

Σ1,2Σ
−1
2,2Σ2,1w1 = (λ∗)2Σ1,1w1

Multiplying both side above by Σ−11,1, we finally conclude that for the solution w1,

Σ−11,1Σ1,2Σ
−1
2,2Σ2,1w1 = (λ∗)2w1

That is w1 is an eigenvector of Σ−11,1Σ1,2Σ
−1
2,2Σ2,1. Further, note that the objective

w>1 Σ1,2v1 = λ∗

and so maximizing the objective corresponds to maximizing the eigenvalue of w1. Thus w1 is the
Top eigenvector of matrix Σ−11,1Σ1,2Σ

−1
2,2Σ2,1. Similarly we find that v1 is the top eigenvector of

Σ−12,2Σ2,1Σ
−1
1,1Σ1,2.

To find the remaining K − 1 directions we simply look for subsequent wi,vi that maximize the
same objective above but are such that vi is orthogonal to v1, . . . ,vi−1 and wi is orthogonal to
w1, . . . ,wi−1. This solution turns out to be the top K eigen vectors of matrices Σ−11,1Σ1,2Σ

−1
2,2Σ2,1

and Σ−12,2Σ2,1Σ
−1
1,1Σ1,2 to find W and V respectively.

Thus the solution to CCA is

W = eigs
(

Σ−11,1Σ1,2Σ
−1
2,2Σ2,1,K

)
and

V = eigs
(

Σ−12,2Σ2,1Σ
−1
1,1Σ1,2,K

)
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