
Machine Learning for Data Science (CS 4786)

Lecture 23: Approximate Inference

The text in black outlines main ideas to retain from the lecture. The text in blue
give a deeper understanding of how we “derive” or get to the algorithm or method.
The text in red are mathematical details for those who are interested. But is not
crucial for understanding the basic workings of the method.

1 Approximate Inference

Variable elimination algorithm is an exact inference technique but can be computationally very
expensive. Belief propagation algorithm is guaranteed to work only on trees. Belief propagation
on trees can be extended to general graphs by something called the junction tree algorithm. That
is an algorithm where we form a tree-like structure out of the graphical model by a process called
tree decomposition. But, the bottom line is that exact inference is known to be provably com-
putationally hard! So naturally the intuitive thing to do is to perform approximate inference. In
approximate inference, we aim at approximately computing the probabilities we are aiming to infer.
The approximation could be additive in that we aim to get an estimate P̂ such that,∣∣∣P̂ (Latent|Observed)− P (Latent|Observed)

∣∣∣ ≤ ε
for some small ε > 0. Or the approximation can be multiplicative:

(1− ε)P (Latent|Observed) ≤ P̂ (Latent|Observed) ≤ (1 + ε)P (Latent|Observed)

Broadly, there are (at least) two strategies for approximate inference. The first is a sampling
based approach where we approximately infer probabilities by sampling from the desired distri-
bution and taking some form of empirical estimate to approximate the true probabilities. The
next approach is a more functional form where we approximate the probability to be inferred by a
simpler distributions that are progressively easier compute. A prototypical methods that uses the
second approach are variational approaches.

2 Inference via sampling

Before we proceed to inference via sampling in general, we start with a simple observation that for
Bayesian networks, sampling from the joint distribution can be done efficiently given the parameters.
How?

Well note that Bayesian networks are generative models where we are given the distribution of
each variable given its parents. Hence we can topologically sort variables and then starting from
parents going down the network, we can one by one sample first parent variables from marginal,

1

then each child given its parent and so on. This way, since the joint distribution factorizes over
the graph as P (X1, . . . , XN) =

∏N
i=1 P (Xi|Parent(Xi)) we can easily obtain samples from the joint

distribution.

2.1 Rejection Sampling

Now lets move to the more interesting question of inference in general. Say we wanted to infer the
probability

P (XLatent1 = xLatent1 , . . . , XLatentm = xLatent1 |XObserved1 = xObserved1 , . . . , XObservedn = xObservedn)

The idea behind rejection sampling is simple: since we know how to sample from joint distribution
efficiently, we draw multiple samples from the joint distribution. We retain only those samples
that match observations and throw away the remaining. Finally we approximate P (XLatent1 =
xLatent1 , . . . , XLatentm = xLatentm |XObserved1 = xObserved1 , . . . , XObservedn = xObservedn) as

P̂ (XLatent1 = xLatentm , . . . , XLatentm = xLatentm |XObserved1 = xObserved1 , . . . , XObservedn = xObservedn)

=
1

R

R∑
r=1

1{X̃r
Latent1 = xLatent1 , . . . , X̃

r
Latentm = xLatentm}

where R is the total number of samples after rejecting ones that don’t match observation and
X̃1, . . . , X̃R are used to represent the non-rejected samples, that is the subset of samples X1, . . . , XT

that match observation.

Why does this work? Note that by drawing from the joint distribution and rejecting, we are
basically only retaining those samples such that match observation. Imagine we drew a very large
number of samples T from the joint distribution. Out of this, R, is the number of ones that
matched the observation. Hence R/T is an approximation for P (Observation). Also note that
total number of samples out of the T samples that both match the observations and are such that
XLatent1 = xLatentm , . . . , XLatentm = xLatentm is the quantity 1{Xr

Latent1
= xLatent1 , . . . , X

r
Latentm

.
This quantity approximates P (Observation,Latent). Since

P (Latent|Observation) =
P (Observation,Latent)

P (Observation)

we can conclude that

1
T

∑T
t=1 1{Xt

Latent1
= xLatent1 , . . . , X

t
Latentm=xLatentm ,X

t
Observed1

=xObserved1
,...,Xt

Observedn
=xObservedn

}
1
T

∑T
t=1 1{Xt

Observed1
= xObserved1 , . . . , X

t
Observedn

= xObservedn}

=
1

R

R∑
r=1

1{X̃r
Latent1 = xLatent1 , . . . , X̃

r
Latentm = xLatentm}

Drawback at a high level: The drawback at a high level for this approach is that we could
reject a lot of samples. Especially is we have multiple variables that are observed, then since most
draws from joint distribution wont match observation we reject most of the total T number of
draws.

2

Why it works (detailed): Let us try to understand how well this approach works. Note that
R/T is the empirical estimate of P (Observations). From law of large numbers we can conclude
that with high probability over samples, R/T is close to P (Observations). Specifically, via Ho-
effding/Bernstein inequality we can in fact conclude that for any δ > 0, with probability at least
1− δ, ∣∣∣∣P (Observations)− R

T

∣∣∣∣ ≤
√

2 log
(
2
δ

)
T

Similarly, we also simultaneously have that with probability at least 1− δ∣∣∣∣∣P (Observations,Latent)− 1

T

T∑
t=1

1{Xt
Latent = xLatent, X

t
Observed = xObserved}

∣∣∣∣∣ ≤
√

2 log
(
2
δ

)
T

where in the above I have used Xt
Latent = xLatent to mean Xt

Latent1
= xLatent1 , . . . , X

t
Latentm

=
xLatentm and similarly Xt

Observed = xObserved to mean Xt
Observed1

= xObserved1 , . . . , X
t
Observedn

=
xObservedn .
Now based on these two inequalities we see that,

1

R

R∑
r=1

1{X̃r
Latent1 = xLatent1 , . . . , X̃

r
Latentm = xLatentm} =

1
T

∑T
t=1

∑T
t=1 1{Xt

Latent = xLatent, X
t
Observed = xObserved}

R
T

and so,

P (Observations,Latent)−
√

2 log(2/δ)
T

P (Observations) +

√
2 log(2/δ)

T

≤ 1

R

R∑
r=1

1{X̃r
Latent = xLatent} ≤

P (Observations,Latent) +

√
2 log(2/δ)

T

P (Observations)−
√

2 log(2/δ)
T

Notice that this first of all means that as T becomes larger and larger we get arbitrarily close
to P (Observations,Latent)/P (Observations) = P (Latent|Observations). More specifically, notice

that if T is large enough so that

√
2 log(2/δ)

T ≤ εP (Observations,Latent), that is

T >
2 log(2/δ)

(εP (Observations,Latent))2

then we can conclude that

(1− ε)P (Latent|Observation) ≤ P̂ (Latent|Observation) ≤ (1 + ε)P (Latent|Observation)

Clearly we have the issue that number of samples T we need grows inversely with P (Observations,Latent))2

which when small is problematic.

2.2 Importance Sampling

The idea behind importance sampling or importance weighted estimates can be seen fairly generally
beyond just for inference. Say we want to estimate for some function f(x) the expected value under
draws from distribution P . Computing such expectations for arbitrary functions is often hard. If
we were able to sample from P , then one way to approximate the expectation could be to simply

3

draw multiple samples from P and take the average value of f under the samples drawn. However,
what if we didn’t know how to sample from P? Say we have access or can compute P (X = x) easily
but we cannot compute expectation of f under P (since integral of arbitrary function f under P
can be hard). But say we do know some distribution Q from which both we know how to sample
from and can compute Q(X = x) easily. In this case, note that

EX∼P [f(X)] =
∑
x

P (X = x)f(x) =
∑
x

Q(X = x)
P (X = x)

Q(X = x)
f(x) = EX∼Q

[
P (X)

Q(X)
f(X)

]
Thus we see that expected value of f under P can be seen as expected value of P

Qf under Q. Now
we can simply approximate this expectation by sampling from Q and taking average under the
sample of function P

Qf . That is, specifically,

EX∼P [f(X)] ≈ 1

T

T∑
t=1

P (X = Xt)

Q(X = Xt)
f(Xt)

Now coming back to our inference problem, note that

P (XLatent = xLatent|XObserved = xobserved) = EXLatent∼P (Latent|XObserved=xobserved) [1{XLatent = xLatent}]

Hence we can view function f(XLatent) = 1{XLatent = xLatent} as the function we are interested in.
The target distribution we want to get expectation over as P (Latent|XObserved = xobserved).

Now for inference problem, the distribution we instead sample from is:

∝
m∏
i=1

P (XLatenti |Parent(XLatenti))

=

∏m
i=1 P (XLatenti |Parent(XLatenti))∑

value−of−latent
∏m
i=1 P (XLatenti |Parent(XLatenti))

where for Parent(XLatenti), if a parent is unobserved we use the value sampled earlier (in the
topological sort order) or if parent is observed, then we use the observed value. Hence notice that

4

the weight

P (Xt
Latent = xLatent)

Q(Xt
Latent = xLatent)

=
P (Xt

Latent = xLatent|Xt
Observed = xobserved)∏m

i=1 P (XLatenti = xLatenti |Parent(XLatenti))
×

∑
value−of−latent

m∏
i=1

P (XLatenti |Parent(XLatenti))

=
P (Xt

Latent = xLatent, X
t
Observed = xobserved)

P (Xt
Observed = xobserved)

∏m
i=1 P (Xt

Latenti
= xLatenti |Parent(Xt

Latenti
))

×
∑

value−of−latent

m∏
i=1

P (XLatenti |Parent(XLatenti))

=

∏m
i=1 P (Xt

Latenti
= xLatenti |Parent(Xt

Latenti
= xLatenti))×

∏n
j=1 P (Xt

Observedj
= xObservedj

|Parent(Xt
Observedj

))

P (Xt
Observed = xobserved)

∏m
i=1 P (Xt

Latenti
= xLatenti |Parent(Xt

Latenti
))

×
∑

value−of−latent

m∏
i=1

P (XLatenti |Parent(XLatenti))

=

n∏
j=1

P (Xt
Observedj

= xObservedj
|Parent(Xt

Observedj
))×

∑
value−of−latent

∏m
i=1 P (XLatenti |Parent(XLatenti))

P (Xt
Observed = xobserved)

∝
n∏
j=1

P (Xt
Observedj

= xObservedj
|Parent(Xt

Observedj
)) = wt

Thus we see that

wt ∝ P (Xt
Latent = xLatent)

Q(Xt
Latent = xLatent)

So for instance, say
P (Xt

Latent=xLatent)
Q(Xt

Latent=xLatent)
= wt

C where C is the normalizing constant. We have that,

1 = EXt
Latent∼P [1] = EXt

Latent∼Q

[
P (Xt

Latent)

Q(Xt
Latent)

]
= EXt

Latent∼Q

[
wt

C

]
=

EXt
Latent∼Q [wt]

C

Thus we see that C = EXt
Latent∼Q [wt] and so,

P (Xt
Latent = xLatent)

Q(Xt
Latent = xLatent)

=
wt

EXt
Latent∼Q [wt]

where wt =
∏n
j=1 P (Xt

Observedj
= xObservedj

|Parent(Xt
Observedj

)). Thus, our estimate for under importance

sampling with f(XLatent) = 1{XLatent = xLatent} is given by

P̃ (XLatent = xLatent|Obervations) =
1

T

T∑
t=1

wt

EXLatent∼Q[w(XLatent)]
1{XLatent = xLatent}

=
1

EXLatent∼Q[w(XLatent)]

1

T

T∑
t=1

wt1{XLatent = xLatent}

Now note that we can use sampling again to approximate EXLatent∼Q[w(XLatent)] as average over samples

drawn from Q as 1
T

∑T
t=1 w

t. Thus our final estimate is given by

P̂ (XLatent = xLatent|Obervations) =

∑T
t=1 w

t1{XLatent = xLatent}∑T
t=1 w

t

5

Why importance sampling works (detailed version): To see that the importance sam-
pling estimate works we will first show that P (XLatent = xLatent|Obervations) is close to P̃ (XLatent =

xLatent|Obervations) and then we will show that P̃ (XLatent = xLatent|Obervations) is close to P̂ (XLatent =
xLatent|Obervations). To this end, note that

P (XLatent = xLatent|Observation) = EXLatent∼Q

[
w(XLatent)

EXLatent∼Q[w(XLatent)]
1{XLatent = xLatent}

]
=

1

EXLatent∼Q[w(XLatent)]
EXLatent∼Q [w(XLatent)1{XLatent = xLatent}]

Now note that by law of large numbers we have that EXLatent∼Q [w(XLatent)1{XLatent = xLatent}] is with high

probability over sample close to 1
T

∑T
t=1 w

t1{Xt
Latent = xLatent}. Specifically, using Hoeffding inequality we

can conclude that for any δ with probability 1− δ,∣∣∣∣∣ 1

T

T∑
t=1

wt1{Xt
Latent = xLatent} − EXLatent∼Q [w(XLatent)1{XLatent = xLatent}]

∣∣∣∣∣ ≤
√

2 log(2/δ)

T

Hence we have that with probability 1− δ,∣∣∣P̃ (XLatent = xLatent|Obervations)− P (XLatent = xLatent|Observation)
∣∣∣ ≤√2 log(2/δ)

T

Hence, picking T > 2 log(2/δ)/ε2 we get additive approximation of ε and picking T > 2 log(2/δ)/ε2(P (XLatent =
xLatent|Observation))2 we get the multiplicative approximation. Now to show that P̃ (XLatent = xLatent|Obervations)

is close to P̂ (XLatent = xLatent|Obervations). We note that EXLatent∼Q[w(XLatent)] is close to 1
T

∑T
t=1 w

t by

Hoeffding bound again. and this way we can show that our final estimate P̂ is close to our target inference
probability.

The analysis here does not show the difference between number of samples required for rejection versus
importance sampling. To understand this difference mathematically, one has to look more closely at the
variance of the two estimates.

6

