
Machine Learning for Data Science (CS 4786)

Lecture 21: Belief Propagation

The text in black outlines main ideas to retain from the lecture. The text in blue
give a deeper understanding of how we “derive” or get to the algorithm or method.
The text in red are mathematical details for those who are interested. But is not
crucial for understanding the basic workings of the method.

1 Belief Propagation

In class we looked at variable elimination algorithm which was a fancy way of saying to compute
marginal of some bunch of variables, we sum over all remaining variables (other than ones we are
computing marginal of). We saw that order of summation mattered to a great extent in terms
of determining efficiency of the method. Often one might need to compute multiple marginals or
conditional probabilities and using variable elimination to compute these one by one is very time
consuming. As an example, consider the case of HMM. We could have used variable elimination
there and done this for each variable multiple times. But this would have been exhausting! Instead
what we did there was a single backward pass a single forward pass and with that we were ready
to do the multiple inferences in a stroke. In fact the forward backward algorithm was your first
example of message passing.

Belief propagation is a method for performing inference in graphical models where one can think
of each vertex in the graph as a node in a network. Nodes send messages to neighboring nodes
passing their beliefs along. The idea is that once the nodes have passed messages long enough,
these messages hopefully converge and thus help us converge to the right answer that can be used
for inference.

To this end, here are the rules of belief propagation game. Assume for simplicity that each
nodes in our Bayesian network can take on K values. Now the messages each node passes to its
neighbor will be a vector of length K.

1. Each node Xi has a so called evidence vector EXi . If a node Xi is unobserved, then EXi(k) = 1
for every k ∈ {1, . . . ,K}. On the other hand, if a node is observed, specifically if node Xi

is observed to have value Xi = xi, then, EXi(xi) = 1 and EXi(k) = 0 for any k 6= xi.
Think of evidence as accounting for observations, if we don’t observe anything, every value is
equally likely, on the other hand, if a variable is observed, we set evidence to exactly indicate
observation and set all other values to 0.

2. Messages a node sends to its children are belief about its own value. That is, the message
that Xi sends to a child Xj is one that ranges over values of variable Xi.

3. Messages a node sends to its parent are belief about value of parent. That is, the message
that Xj sends to a parent Xi is one that ranges over values of variable Xi.
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Now the computations of messages on every round, is given as follows:

• Each message computed by each node are sum over product of three types of terms. First, the
evidence of the node sending the message. Second, the conditional probability of that node
given values of its parents. Finally, the third term is product of all messages from neighbors
except the message received from the node we are computing the message for. Specifically
we now provide the exact messages computed.

• If node Xi is a parent of Xj , then message at round t that Xi sends to Xj is computed as
follows:

M
(t)
Xi 7→Xj

(xi) =
∑

{xl:l∈Parent(Xi)}

EXi(xi)× P (Xi = xi|Parent(Xi))×
∏

k∈N(Xi)\{Xj}

M
(t−1)
Xk 7→Xi


• If node Xj is a child of Xi, then message at round t that Xj sends to Xi is computed as

follows:

M
(t)
Xi 7→Xj

(xi) =
∑

{xl:l∈Parent(Xi)∪{Xi}}

EXi(xi)× P (Xi = xi|Parent(Xi))×
∏

k∈N(Xi)\{Xj}

M
(t−1)
Xk 7→Xi


The key thing to observe above is that the only portion of the message computation that changes on
every round is the term involving product of messages received. Further, note that if all incoming
messages to a node have converged on some round, then the message that this node sends out from
that round onwards is the same (has converged).

To understand the procedure better, lets look at the following example: To shorten notation,

Figure 1: Mixture model

let us name variables as follows:

XK : Alarm in Kitchen

XB: Alarm in Bedroom
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XG: Alarm in Garage

XCS : Central system alerted

XGS : Garage system alerted

XC : Cell phone call recieved

XE : Emergency (911) call receieved

In the above example, all variables are binary having values 0 if switched off and 1 if switched
on. The observation is that we have received a phone call on the cell phone. Hence we have the
evidences as follows:
For node XC , the evidence is given as EXC

(0) = 0 and EXC
(1) = 1. For all other nodes, the

evidence is the vector (1, 1).
Now we are ready to compute messages sent on various rounds. We will assume that all messages

on round 0 are the all 1’s vectors, that is (1, 1). Now before we start working out the messages for
each round let us simplify the computation a bit as follows: For any t,

M
(t)
XK 7→XCS

(xK) = EXK
(xK)× P (XK = xK)

= P (XK = xk)

M
(t)
XB 7→XCS

(xB) = EXB
(xB)× P (XB = xB)

= P (XB = xB)

M
(t)
XG 7→XGS

(xG) = EXG
(xG)× P (XG = xG)

= P (XG = xG)

M
(t)
XGS 7→XC

(xGS) =
∑
xG

EXGS
(xGS)× P (XGS = xGS |XG = xG)×M

(t−1)
XG 7→XGS

(xG)

=
∑
xG

P (XGS = xGS |XG = xG)×M
(t−1)
XG 7→XGS

(xG)

M
(t)
XCS 7→XE

(xCS) =
∑
xB

∑
xK

EXCS
(xCS)× P (XCS = xCS |XK = xK , XB = xB)×M

(t−1)
XK 7→XCS

(xK)×M
(t−1)
XB 7→XCS

(xB)×M
(t−1)
XC 7→XCS

(xCS)

=
∑
xB

∑
xK

P (XCS = xCS |XK = xK , XB = xB)×M
(t−1)
XK 7→XCS

(xK)×M
(t−1)
XB 7→XCS

(xB)×M
(t−1)
XC 7→XCS

(xCS)

M
(t)
XCS 7→XC

(xCS) =
∑
xB

∑
xK

EXCS
(xCS)× P (XCS = xCS |XK = xK , XB = xB)×M

(t−1)
XK 7→XCS

(xK)×M
(t−1)
XB 7→XCS

(xB)×M
(t−1)
XE 7→XCS

(xCS)

=
∑
xB

∑
xK

P (XCS = xCS |XK = xK , XB = xB)×M
(t−1)
XK 7→XCS

(xK)×M
(t−1)
XB 7→XCS

(xB)×M
(t−1)
XE 7→XCS

(xCS)

3



M
(t)
XE 7→XCS

(xCS) =
∑
xE

EXE
(xE)× P (XE = xE |XCS = xCS) =

∑
xE

P (XE = xE |XCS = xCS)

= 1

M
(t)
XC 7→XGS

(xGS) =
∑
xC

∑
xCS

EXC
(xC)× P (XC = xC |XCS = xCS , XGS = xGS)×M

(t−1)
XCS 7→XC

(xCS)

=
∑
xCS

P (XC = 1|XCS = xCS , XGS = xGS)×M
(t−1)
XCS 7→XC

(xCS)

M
(t)
XC 7→XCS

(xCS) =
∑
xC

∑
xGS

EXC
(xC)× P (XC = xC |XCS = xCS , XGS = xGS)×M

(t−1)
XGS 7→XC

(xGS)

=
∑
xGS

P (XC = 1|XCS = xCS , XGS = xGS)×M
(t−1)
XGS 7→XC

(xGS)

M
(t)
XCS 7→XK

(xK) =
∑
xB

∑
xCS

EXCS
(xCS)P (XCS = xCS |XK = xK , XB = xB)M

(t−1)
XE 7→XCS

(xCS)M
(t−1)
XC 7→XCS

(xCS)M
(t−1)
XB 7→XCS

(xB)

=
∑
xB

∑
xCS

P (XCS = xCS |XK = xK , XB = xB)M
(t−1)
XE 7→XCS

(xCS)M
(t−1)
XC 7→XCS

(xCS)M
(t−1)
XB 7→XCS

(xB)

M
(t)
XCS 7→XB

(xB) =
∑
xK

∑
xCS

EXCS
(xCS)P (XCS = xCS |XK = xK , XB = xB)M

(t−1)
XE 7→XCS

(xCS)M
(t−1)
XC 7→XCS

(xCS)M
(t−1)
XK 7→XCS

(xK)

=
∑
xK

∑
xCS

P (XCS = xCS |XK = xK , XB = xB)M
(t−1)
XE 7→XCS

(xCS)M
(t−1)
XC 7→XCS

(xCS)M
(t−1)
XK 7→XCS

(xK)

M
(t)
XGS 7→XG

(xG) =
∑
xGS

EXGS
(xGS)× P (XGS = xGS |XG = xG)×M

(t−1)
XC 7→XGS

(xGS)

=
∑
xGS

P (XGS = xGS |XG = xG)×M
(t−1)
XC 7→XGS

(xGS)

Now all we need to do is, in each of the equations above substitute the messages from previous
rounds to compute the new messages. To this end, note that,

Round t = 1: the following messages already converge.

M
(1)
XK 7→XCS

(xK) = P (XK = xK), M
(1)
XB 7→XCS

(xB) = P (XB = xB), M
(1)
XG 7→XGS

(xG) = P (XG = xG)

M
(1)
XE 7→XCS

(xCS) = 1

Round t = 2: In second round, given the messages converged in round 1, note that all but one
incoming messages to nodes XCS and XGS have converged and so in this round the following

4



messages converge:

M
(2)
XCS 7→XC

(xCS) =
∑
xB

∑
xK

P (XCS = xCS |XK = xK , XB = xB)×M
(1)
XK 7→XCS

(xK)×M
(1)
XB 7→XCS

(xB)×M
(1)
XE 7→XCS

(xCS)

=
∑
xB

∑
xK

P (XCS = xCS |XK = xK , XB = xB)× P (XK = xK)× P (XB = xB)× 1

=
∑
xB

∑
xK

P (XCS = xCS , XK = xK , XB = xB)

= P (XCS = xCS)

M
(2)
XGS 7→XC

(xGS) =
∑
xG

P (XGS = xGS |XG = xG)×M
(1)
XG 7→XGS

(xG) =
∑
xG

P (XGS = xGS |XG = xG)× P (XG = xG)

=
∑
xG

P (XGS = xGS , XG = xG) = P (XGS = xGS)

Round t = 3: Note that give the messages converged up to round 2, on round 3 we can show that
messages sent from node XC to XCS and to XGS will converge. Let us calculate these messages:

M
(3)
XC 7→XCS

(xCS) =
∑
xGS

P (XC = 1|XCS = xCS , XGS = xGS)×M
(2)
XGS 7→XC

(xGS)

=
∑
xGS

P (XC = 1|XCS = xCS , XGS = xGS)P (XGS = xGS)

=
∑
xGS

P (XC = 1|XGS = xGS , XCS = xCS)
1

P (XCS = xCS)
P (XGS = xGS)P (XCS = xCS)

where in the above we simply multiplied and divided by P (XCS = xCS). Next note that nodes
XCS and XGS are marginally independent and so P (XGS = xGS)P (XCS = xCS) = P (XGS =
xGS , XCS = xCS) and so,

M
(3)
XC 7→XCS

(xCS) =
∑
xGS

P (XC = 1|XGS = xGS , XCS = xCS)
1

P (XCS = xCS)
P (XGS = xGS)P (XCS = xCS)

=
∑
xGS

P (XC = 1|XGS = xGS , XCS = xCS)
1

P (XCS = xCS)
P (XGS = xGS , XCS = xCS)

=
∑
xGS

P (XGS = xGS , XCS = xCS , XC = 1)
1

P (XCS = xCS)

= P (XCS = xCS , XC = 1)
1

P (XCS = xCS)

= P (XC = 1|XCS = xCS)

Similarly note that:

M
(3)
XC 7→XGS

(xGS) =
∑
xCS

P (XC = 1|XCS = xCS , XGS = xGS)×M
(2)
XCS 7→XC

(xCS)

=
∑
xCS

P (XC = 1|XCS = xCS , XGS = xGS)P (XCS = xCS)

=
∑
xCS

P (XC = 1|XGS = xGS , XCS = xCS)
1

P (XGS = xGS)
P (XGS = xGS)P (XCS = xCS)
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Again P (XGS = xGS)P (XCS = xCS) = P (XGS = xGS , XCS = xCS) and so,

M
(3)
XC 7→XGS

(xGS) =
∑
xCS

P (XC = 1|XGS = xGS , XCS = xCS)
1

P (XGS = xGS)
P (XGS = xGS , XCS = xCS)

=
∑
xCS

P (XGS = xGS , XCS = xCS , XC = 1)
1

P (XGS = xGS)

= P (XGS = xGS , XC = 1)
1

P (XGS = xGS)

= P (XC = 1|XGS = xGS)

Round t = 4: Finally on round 4 all the messages converge. Specifically, we have,

M
(4)
XCS 7→XK

(xK) =
∑
xB

∑
xCS

P (XCS = xCS |XK = xK , XB = xB)M
(3)
XE 7→XCS

(xCS)M
(3)
XC 7→XCS

(xCS)M
(3)
XB 7→XCS

(xB)

=
∑
xB

∑
xCS

P (XCS = xCS |XK = xK , XB = xB)× 1× P (XC = 1|XCS = xCS)P (XB = xB)

=
∑
xB

∑
xCS

P (XCS = xCS |XK = xK , XB = xB)P (XC = 1|XCS = xCS)P (XB = xB)P (XK = xK)
1

P (XK = xK)

Now since XK and XB are marginally independent, we have that P (XB = xB)P (XK = xK) =
P (XB = xB, XK = xK) and so,

M
(4)
XCS 7→XK

(xK) =
∑
xB

∑
xCS

P (XCS = xCS |XK = xK , XB = xB)P (XC = 1|XCS = xCS)P (XB = xB , XK = xK)
1

P (XK = xK)

=
∑
xB

∑
xCS

P (XCS = xCS , XK = xK , XB = xB)P (XC = 1|XCS = xCS)
1

P (XK = xK)

=
∑
xCS

P (XCS = xCS , XK = xK)P (XC = 1|XCS = xCS)
1

P (XK = xK)

=
∑
xCS

P (XCS = xCS , XK = xK)P (XC = 1|XCS = xCS , XK = xK)
1

P (XK = xK)
(local Markov)

=
∑
xCS

P (XC = 1, XCS = xCS , XK = xK)
1

P (XK = xK)

= P (XC = 1, XK = xK)
1

P (XK = xK)

= P (XC = 1|XK = xK)
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Similarly we have that

M
(4)
XCS 7→XB

(xB) =
∑
xK

∑
xCS

P (XCS = xCS |XK = xK , XB = xB)M
(3)
XE 7→XCS

(xCS)M
(3)
XC 7→XCS

(xCS)M
(3)
XK 7→XCS

(xK)

=
∑
xK

∑
xCS

P (XCS = xCS |XK = xK , XB = xB)P (XC = 1|XCS = xCS)P (XK = xK)

=
∑
xK

∑
xCS

P (XCS = xCS |XK = xK , XB = xB)P (XC = 1|XCS = xCS)P (XK = xK)P (XB = xB)
1

P (XB = xB)

=
∑
xK

∑
xCS

P (XCS = xCS |XK = xK , XB = xB)P (XC = 1|XCS = xCS)P (XK = xK , XB = xB)
1

P (XB = xB)
=

∑
xK

∑
xCS

P (XCS = xCS , XK = xK , XB = xB)P (XC = 1|XCS = xCS)
1

P (XB = xB)

=
∑
xCS

P (XCS = xCS , XB = xB)P (XC = 1|XCS = xCS)
1

P (XB = xB)
=

∑
xCS

P (XCS = xCS , XB = xB)P (XC = 1|XCS = xCS , XB = xB)
1

P (XB = xB)
(local Markov)

=
∑
xCS

P (XC = 1, XCS = xCS , XB = xB)
1

P (XB = xB)

= P (XC = 1, XB = xB)
1

P (XB = xB)

= P (XC = 1|XB = xB)

Finally note that,

M
(4)
XGS 7→XG

(xG) =
∑
xGS

P (XGS = xGS |XG = xG)M
(3)
XC 7→XGS

(xGS)

=
∑
xGS

P (XGS = xGS |XG = xG)P (XC = 1|XGS = xGS)

=
∑
xGS

P (XGS = xGS |XG = xG)P (XC = 1|XGS = xGS , XG = xG) (local markov)

=
∑
xGS

P (XC = 1, XGS = xGS |XG = xG)

= P (XC = 1|XG = xG)

Thus on the 4th round all messages converge. More generally this algorithm is guaranteed to
converge on any tree and takes twice the diameter number of rounds to converge.

Now for instance to finally compute

P (XK = xK |XC = 1) ∝ EXK
(xk)× P (XK = xk)× product− of −messages

= EXK
(xK)× P (XK = xk)×M

(4)
XCS 7→XK

(xK)

= P (XK = xk)P (XC = 1|XK = xK)

= P (XC = 1, XK = xK)

Clearly it is true that P (XK = xK |XC = 1) ∝ P (XC = 1, XK = xK) and hence normalizing we
can indeed complete inference of P (XK = xK |XC = 1).
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