
Machine Learning for Data Science (CS 4786)

Lecture 18-19: Graphical Models

The text in black outlines main ideas to retain from the lecture. The text in blue
give a deeper understanding of how we “derive” or get to the algorithm or method.
The text in red are mathematical details for those who are interested. But is not
crucial for understanding the basic workings of the method.

1 Representing Probabilistic Models as Graphs

Consider the mixture models we covered in class. We looked at Gaussian mixture models, mixture
of multinomials etc. In all of this, the generative story was the same. On every round, we first
drew cluster assignment as a random variable from distribution π as ct ∼ π. Next, give cluster
identity to be one of the K clusters, we picked xt as a a point whose distribution was specific to
cluster ct. In gaussian mixture models for example, we drew xt ∼ N(µct ,Σct) where µ1, . . . , µK and
Σ1, . . . ,ΣK are the means and covariances of the K clusters and cluster ct is a gaussian centered
at µct with covariance Σct . In the mixture of multinomials, xt was drawn from multinomial with
parameter pct . Notice a pattern here?

In all these models, only parameterization varies, the relation between variables are same. Graphical
models are a graph based representation of probabilistic models that abstract away parameterization
and help capture relation between the variables in the model. Here is the grammar for a special
kind of graphical models called Bayesian Networks that are catered towards capturing generative
models:

• Observed nodes are drawn as nodes in the graph with unshaded circles (with variable names
in them)

• Unobserved or latent variables are drawn as nodes in the graph with shaded circles (with
variable names in them)

• A directed edge from node A to node B id drawn if A in part generates B. For instance, say
we have variable A and A0 both being gaussian random variable. Now let B be a variable
defined as B = A + A0 + noise where noise is some small random variable with mean 0. In
this example, we have directed edges from A and A0 going out to B.

• Finally, we apply plate notation by drawing a rectangle around a bunch of variables to say we
repeat these variables by drawing this set of variables multiple times using the same process.
For instance, in GMM example, ct’s and xt’s given ct are drawn for every t identically from
same process n times. Hence the graphical model for a mixture model is given as:
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Figure 1: Mixture model

So overall, a Bayesian network is represented as a directed graph where directions indicate which
variables generate which ones. It is obvious that we shouldn’t have directed cycles in a BN as we
can’t have a variable generating itself. Such graphs are called directed acyclic graphs (DAG). What
kind of relationship between variables can a BN capture?

2 Conditional and Marginal Independence

To understand the powers and limitations of a BN we need to first review concepts of conditional
and marginal independences.

Definition 1. We say that a variable Xi is conditionally independent of Xj given a set of variables
A if

P (Xi, Xj |A) = P (Xi|A)× P (Xj |A)

Notice that the above definition is identical to the definition of independence except for the
conditioning on A. If A is taken to be the null set, we call this marginal independence. In
the above definition using the identity P (Xi, Xj |A) = P (Xi|Xj , A)P (Xj |A) we can also conclude
equivalently the definition of conditional independence as:

P (Xi, Xj |A) = P (Xi|Xj , A)P (Xj |A) = P (Xi|A)× P (Xj |A)

and so
P (Xi|Xj , A) = P (Xi|A)

Or in other words, if Xi is conditionally independent of Xj given A, then P (Xi|Xj , A) = P (Xi|A).
This is intuitively simple to understand, it says that given A, no more information is revealed about
Xi by knowing Xj . Perhaps the best example to have in mind is that of genetic information. Given
that you already have your parents (complete) genetic information, knowing your grandparents
genetics reveals nothing more than you already know. So you are conditionally independent of
your grandparents given your parents.

• Two nodes can be marginally independent but can become conditionally dependent given the
third. Example: Say X and Y are independent coin flips (0 for heads and 1 for tails). Hence
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by definition they are marginally independent. But if Z = X+Y a third variable is revealed,
then knowing Z, if we know value of X, then we can determine value of Y . Hence knowing
Z, X and Y become dependent.

• Two nodes can be conditionally independent given third yet marginally dependent. Think of
genetic information from you and your sibling. Clearly there will be high correlation between
biological siblings. However, given complete genetic information of parents, knowing genetic
information of one sibling does not provide new insight into genetic information about the
other sibling.

3 Local Markov Property and Factorizing over the Graph

Now given the definition of conditional independence, we are ready to understand the power of
Bayesian networks. A simple property of a Bayesian network called local markov is that “each
variable is conditionally independent of all its non-descendants give parents”. This property is
intuitive, it says that given parents you gain no more information about yourself knowing anything
about your ancestors and other non-descendants (like siblings and their descendants etc.). Thinking
of the genetic information case, this is obviously true.

Now the fascinating fact is that, if we are given DAG and the local markov property holds, then
we can conclude that the joint probability of the variables factorizes over the graph as follows:

P (X1, . . . , XN ) =
N∏
t=1

P (Xt|Parents(Xt))

Proof. To show this fact, we will assume this following factoid about DAGs. “We can always find
a topological sort of nodes of a graph”. Meaning, we can always find an ordering of the nodes
X1, . . . , XN in such a way that for any i, j, if there is a directed edge from Xi to Xj , then Xi has
to appear before Xj (or i < j). Now we assume that the nodes are ordered according to some
topological sort, the key here is that in a topological sort, if we consider a node Xi, all nodes before
it are either parents or non-descendants (since they clearly cant be descendants). Using this we
show the fact claimed above. To this end note that,

P (X1, . . . , XN ) =

N∏
t=1

P (Xt|Xt−1, . . . , X1)

=

N∏
t=1

P (Xt|Parents(Xt))

where the last step is because of local markov property by which given parents we can remove all
other non-descendants which under topological sort is all other nodes other than parents.

Hence from now on, a Bayesian networks is completely specified by giving a DAG and a bunch of
conditional probability tables for each variable given its parents. We will see how to do inference
which is answering probability questions about nodes in this BN given other nodes values and
learning which is estimating these conditional probabilities given observations.
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