
Machine Learning for Data Science (CS 4786)

Lecture 6: Kernel PCA

The text in black outlines high level ideas. The text in blue provides simple math-
ematical details to “derive” or get to the algorithm or method. The text in red are
mathematical details for those who are interested.

1 Motivation

Consider the 2 dimensional data set distributed as follows:

Any form of linear projection method to one dimension on this data will merge the red and blue
points together thus losing information about the original dataset. This is because one needs to
consider non-linear projection to one dimension to obtain separation of red and blue points.

The key idea that we shall explore in kernel methods have the following idea. Say instead of
trying to reduce the original 2 dimensional points to one dimension via linear projection, we first
write the data points as points in higher dimensional space. As an example, for this example, say
we write every point xt = (Xt, Yt) into a 3 dimensional point given by mapping Φ as

Φ(xt) = (Xt, Yt, X
2
t + Y 2

t)

In this 3 dimensional space, the set of points look like

1

In this case if instead of doing PCA on the original dataset we perform PCA on Φ(x1), . . . ,Φ(xn),
then PCA would pick direction that separates red and blue points. The basic idea in kernel PCA
is to take the original data set, map them (implicitly) to higher dimensional space using mapping
Φ and then perform PCA on this space which is linear projection in this higher dimensional space
that already captures non-linearities.

2 The Kernel Trick

Consider a non-linear dimensionality reduction where the mapping Φ maps a vector xt to higher
dimension that captures all rth order polynomials. As an example consider an example where
xt = (Xt, Yt) is in 2 dimensions. If we want to represent all 3rd degree polynomials for example,
one needs to consider

Φ(xt) = (X3
t , Y

3
t , X

2
t Yt, Y

2
t Xt, X

2
t , Y

2
t , XtYt, Xt, Yt, 1)

This mapped vector in higher dimension is often referred to as feature space. More generally, to
capture all rth degree polynomial of xt’s in d dimensions we need Φ(xt) to be order dK dimensional.
Further, in many interesting cases we might want to have Φ to possibly even map to infinite
dimensions. In this case, first enumerating Φ(xt)’s is not feasible. The kernel trick works on one
simple idea:

Rewrite the algorithm/method so that it only needs access to inner products between data points.
Next, replace these inner products with inner products in feature space.

Kernel trick relies on the fact that while we may not be able to explicitly write out the mappings
Φ(xt), for any two xt,xs we can compute using a kernel function k the inner product as k(xt,xs) =
Φ(xt)

>Φ(xs).
Examples of kernel functions are k(x,x′) = exp(−σ‖x− x′‖2) or k(x,x′) = (x>x′)p.
As a specific example let us consider the case where xt = (Xt, Yt) and p some integer

k(xt,xs) = (x>t xs)
p = (XtXs + YtYs)

p =

p∑
i=0

(
p

i

)
(XtXs)

i(YtYs)
p−i

where the last equality is using binomial theorem. Now notice that if one defines

Φ((X,Y)) =

(
Xp, pY Xp−1, . . . ,

(
p

i

)
Y iXp−i, . . . , Y p

)
2

then we have that

Φ(xt)
>Φ(xs) =

p∑
i=0

(
p

i

)
(XtXs)

i(YtYs)
p−i = k(xt,xs)

Now of course to perform Kernel PCA what we need to do is to write PCA such that it only
depends on inner products.

3 Rewriting PCA in Terms of inner products

In this section we rewrite PCA completely in terms of inner product. Specifically we show how to
compute lower dimensional representation y1, . . . ,yn only in terms of inner products between data
point.

3.1 PCA for Centered Data

We start this subsection assuming that data is centered. That is 1
n

∑n
t=1 xt = 0. Recall that PCA

finds projection matrix W such that the kth column of W (say Wk) is the kth eigen vector of the
covariance matrix. Hence,

λkWk = ΣWk

=

(
1

n

n∑
t=1

xtx
>
t

)
Wk

=

(
1

n

n∑
t=1

xtx
>
t Wk

)

=
1

n

n∑
t=1

(
x>t Wk

)
xt

Hence if we let αk[t] = 1
λkn

x>t Wk, then we see that,

Wk =

n∑
t=1

αk[t]xt

that is a linear combination of the (centered) data points. Now using the above we notice that

ys[k] = x>s Wk = x>s

(
n∑
t=1

αk[t]xt

)
=

n∑
t=1

αk[t]x
>
s xt

Form this we conclude that if data were centered and we knew αk’s then we can compute the lower
dimensional projections only using inner products. Now let us turn our attention to computing
αk’s. To do this we start with our earlier observations that αk[s] = 1

λkn
x>s Wk and subsequently

3

plug in the fact that Wk =
∑n

t=1 αk[t]xt. Hence

αk[s] =
1

λkn
x>s Wk

=
1

λkn
x>s

n∑
t=1

αk[t]xt

=
1

λkn

n∑
t=1

αk[t]x
>
s xt

If we let K̃ be the matrix such that K̃t,s = x>s xt then we see that,

αk[s] =
1

λkn

n∑
t=1

αk[t]K̃s,t =
1

λkn
α>k K̃s

Hence we can conclude that

αk =
1

λkn
K̃αk

That is each αk is in the direction of the kth eigen vector of the matrix K̃ (that it is kth requires us
to observe that the non-zero eigenvalues of K̃ and Σ match). This determines the direction. Now
to get a handle on magnitude we note that ‖Wk‖2 = 1 as its an eigenvector. Hence

1 = ‖Wk‖2 = W>k Wk =

(
n∑
t=1

αk[t]xt

)> n∑
t=1

αk[t]xt = α>k K̃αk

However since αk is in the direction of the kth eigenvector of K̃ whose corresponding eigenvalue is
say γk, we have that

1 = α>k K̃αk = γkα
>
k αk

Hence we conclude that ‖αk‖ = 1√
γk

.

Thus for centered data we can compute αk’s by computing the top K eigenvectors of K̃ and
normalizing the kth eigenvector by dividing through by 1/

√
γk. Subsequently we compute the

lower dimensional projections as:

ys[k] =
n∑
t=1

αk[t]x
>
s xt = α>k K̃s

3.2 Centering Data

In the above section we showed that for already centred data, we can perform PCA with only
knowing the matrix K̃. However the crucial assumption there was that we had centered data. To
perform PCA only based on inner products we need to be able to show that we can compute K̃
matrix only based on inner products. Here we use the following simple calculation.

4

K̃s,t =

(
xt −

1

n

n∑
u=1

xu

)>(
xs −

1

n

n∑
u=1

xu

)

= x>t xs −

(
1

n

n∑
u=1

xu

)>
xs −

(
1

n

n∑
u=1

xu

)>
xt

+
1

n2

(
n∑
u=1

xu

)>(n∑
v=1

xv

)

= x>t xs −
1

n

n∑
u=1

x>u xs −
1

n

n∑
u=1

x>u xt +
1

n2

n∑
u=1

n∑
v=1

x>u xv = Kernt,s −
1

n

n∑
u=1

Kernu,s −
1

n

n∑
u=1

Kernu,t +
1

n2

n∑
u=1

n∑
v=1

Kernu,v

where Kerns,t = x>t xs where x’s this time are not centered. Thus we can see that once can compute
the centered inner product matrix K̃ based only on the uncentered inner product matrix K. The
above equation can we succinctly written in matrix form as

K̃ = Kern− (1n×n ×Kern)

n
− (Kern× 1n×n)

n
+

(1n×n ×Kern× 1n×n)

n2

where 1n×n is teh all ones matrix.

4 Kernel PCA

Now to perform Kernel PCA is simple we simply replace inner products with kernel functions.
That is Kerns,t = k(xt,xs) and then perform PCA only based on inner products as shown in the
slides for kernel PCA.

5

