
Machine Learning for Data Science (CS 4786)

Lecture 5: Random Projections

The text in black outlines high level ideas. The text in blue provides simple math-
ematical details to “derive” or get to the algorithm or method. The text in red are
mathematical details for those who are interested.

1 Motivation

Consider the scenario when both dimensionality d of the original dataset and the number of data
points n are large. Specifically in this scenario, PCA is not a viable option as it is computationally
intensive and in fact requires to store/access the entire data matrix which can be prohibitive.
Random projection is catered to exactly such scenario and works by producing matrix W , the
d×K projection matrix by randomly sampling its entries!

2 Random Projection Method

The random projection method constitutes of sampling the projection matrix W by filling each of
its entries by sampling independently at random as:

W [i, j] =

{
+ 1√

K
with probability 1/2

− 1√
K

with probability 1/2

That is we flip a fair coin to set the sign of each entry to + or − of 1/
√
K. The surprising fact is that

random projection provides a guarantee that after projecting the points from the d dimensional
space to K dimensional space using the randomly drawn matrix W , the distances between the high
dimensional points is preserved in the lower dimensional projections up to some approximation
factor.

Specifically, the following lemma known as the Johnson Lindenstrauss Lemma formalizes the
guarantee of the random projection method.

Lemma 1. For any δ > 0 and ε > 0, if we pick K > 20 log(n/δ)
ε2

then, with probability at least 1− δ
over the draw of random projection matrix W , for all t, s ∈ {1, . . . , n},

(1− ε)‖yt − ys‖2 ≤ ‖xt − xs‖2 ≤ (1 + ε)‖yt − ys‖2

where each yt = x>t W is the K dimensional projection of corresponding point xt ∈ Rd.

The above lemma is rather surprising at first glance, as the dimensionality d of the original
data does not come into play in choice of K. Hence the same K holds for same choice of n, ε and
δ, irrespective of whether the original dimensionality is 10 or a million or a 100-billion.
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3 Why Random Projection Works?!

In this section, first we will provide at a high level, an explanation of why random projection
could work by showing that random projection preserves distances in expectation. In subsequent
subsection, we will provide the formal high probability version of the JL Lemma for interested
readers.

3.1 Simpler In-Expectation Version

Consider any vector x̃ ∈ Rd and let ỹ = x̃>W be the random projection of x̃. Note that:

|ỹ[j]|2 =

(
d∑
i=1

W [i, j] · x̃[i]

)2

=
d∑
i=1

(W [i, j] · x̃[i])2 + 2
∑
i′>i

(W [i, j] · x̃[i])
(
W [i′, j] · x̃[i′]

)
=

d∑
i=1

W 2[i, j]x̃2[i] +
∑
i′>i

(
W [i, j] ·W [i′, j]

)
·
(
x̃[i] · x̃[i′]

)
However W 2[i, j] = 1/K and so

=
1

K

d∑
i=1

x̃2[i] +
∑
i′>i

(
W [i, j] ·W [i′, j]

)
·
(
x̃[i] · x̃[i′]

)
Now note that E [(W [i, j] ·W [i′, j])] = E [W [i, j]] · E [W [i′, j]] = 0 and so,

E
[
|ỹ[j]|2

]
=

1

K

d∑
i=1

x̃2[i] =
1

K
‖x̃‖2

Further, note that each term (x̃[i] · x̃[i′]) is 0 mean and symmetric. Hence in fact, |ỹ[j]|2 is sym-
metrically distributed with expected value of 1

K ‖x̃‖
2.

From this we conclude that,

E
[
‖ỹ‖2

]
=

K∑
j=1

E
[
|ỹ[j]|2

]
=

K∑
j=1

1

K
‖x̃‖2 = ‖x̃‖2

Thus we see that the expected norm squared of ỹ is same as norm squared of x̃. Now further note
that each ỹ[j] is independent of ỹ[j′] for any j, j′ ∈ {1, . . . ,K}. Thus we can think of ‖ỹ‖2 as an
average of K independent random variables whose expectations are ‖x̃‖2. Thus we can expect a
high probability statement.

Now if we let x̃ = xt − xs, then

ỹ = (xt − xs)
>W = x>t W − x>s W = yt − ys .

Thus the expected distance square between yt and ys is same as distance between xt and xs. In
the following section we shall in fact prove the high probability JL lemma.
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3.2 High Probability Version

To prove the high probability version of this statement, we need the following simple lemma.

Lemma 2 (Hoeffding Lemma (paraphrased)). Let X be a random variable that takes value ci with
probability 1/2 and value −ci with probability 1/2. Then, we have that for any λ

E [exp (λX)] ≤ exp
(
λ2c2/2

)
Proof.

E [exp (λX)] =
1

2
(exp (λci) + exp (−λci)) ≤ exp

(
λ2c2i /2

)
where we use the fact that for any a, ea + e−a ≤ 2ea

2/2

Now we use the above lemma to obtain the following proposition.

Lemma 3. Consider any vector x̃ ∈ Rd and let ỹ = x̃>W be the random projection of x̃. We have
that for any j ∈ {1, . . . ,K}, and any λ,

E [exp (λỹ[j])] ≤ exp

(
λ2‖x̃‖2

2K

)
and further, for any s ≤ K/‖x̃‖2

E
[
exp

(
s‖ỹ‖2/2

)]
≤
(

1− s‖x̃‖2

K

)−1/2
Proof. Consider any vector x̃ ∈ Rd and let ỹ = x̃>W be the random projection of x̃. Now, consider
any j ∈ {1, . . . ,K}, the term ỹ[j] =

∑d
i=1 x̃[i]W [i, j] can be considered as sum of d independently

distributed random variables x̃[1]W [1, j], . . . , x̃[d]W [d, j]. Further, each x̃[i]W [i, j] is ±x̃[i]|/
√
K

with equal probability. Hence, using Hoeffding’s inequality, for any λ,

E [exp (λỹ[j])] = E

[
exp

(
λ

d∑
i=1

x̃[i]W [i, j]

)]

=

d∏
i=1

E [exp (λx̃[i]W [i, j])]

Using Hoeffding Lemma, with Xi = x̃[i]W [i, j]

≤
d∏
i=1

exp

(
λ2
(
x[i]√
K

)2

/2

)

= exp

(
λ2

d∑
i=1

(
x[i]√
K

)2

/2

)

= exp

(
λ2‖x̃‖2

2K

)
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Hence we conclude that for any λ,

E [exp (λỹ[j])] ≤ exp

(
λ2‖x̃‖2

2K

)
(1)

This yields the first inequality. To prove the second inequality, we use a really cool trick with
Gaussian random variables. Consider the random variable Z ∼ N(0, 1), a standard normal ran-
dom variable. For such a variable, using the moment generating function, we have that for any
α, E [exp(αZ)] = exp(α2/2). Specifically using this with α =

√
sỹ[j], we can conclude that

exp
(
sỹ[j]2/2

)
= EZ [exp (

√
sỹ[j]Z)]. Hence, for any s > 0

E
[
exp

(
sỹ[j]2/2

)]
= E

[
EZ
[
exp

(√
sỹ[j]Z

)]]
= EZ

[
E
[
exp

(
(
√
sZ)ỹ[j]

)]]
Using inequality in Eq. 1 with λ = (

√
sZ) we get,

≤ EZ
[
exp

(
sZ2‖x̃‖2

2K

)]
=

(
1− s‖x̃‖2

K

)−1/2
The last equality holds for any s s.t. s‖x̃‖2

2K ≤ 1/2 and is obtained because Z2 follows a Chi-square
distribution and we are using the moment generating function for this distribution. Hence we have
that K ≥ s‖x̃‖2,

E
[
exp

(
sỹ[j]2/2

)]
≤
(

1− s‖x̃‖2

K

)−1/2
Now ỹ[j]’s are independently drawn and so,

E
[
exp

(
s‖ỹ‖2/2

)]
= E

exp

s K∑
j=1

ỹ[j]2/2

 =
K∏
j=1

E
[
exp

(
sỹ[j]2/2

)]
≤
(

1− s‖x̃‖2

K

)−K/2
This conclude the proof.

Now we are in a position to prove the JL lemma.

Lemma 4 (JL Lemma). For any δ > 0 and ε > 0, if we pick K > 12 log(n(n−1))
ε2

, with probability
1− δ, for any s, t ∈ {1, . . . , n}

(1− ε)‖xt − xs‖2 ≤ ‖yt − ys‖2 ≤ (1 + ε)‖xt − xs‖2

Proof.

P
(
‖ỹ‖2 > (1 + ε)‖x̃‖2

)
= P

(
exp(s‖ỹ‖2/2) > exp(s(1 + ε)‖x̃‖2/2)

)
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However by Markov inequality, P (X > θ) ≤ E[X]/θ for any non-negative R.V. X and so

≤
E
[
exp(s‖ỹ‖2/2)

]
exp(s(1 + ε)‖x̃‖2/2)

using previous lemma for the numerator,

≤
(

1− s‖x̃‖2

K

)−K/2
exp

(
−s(1 + ε)‖x̃‖2/2

)
Using s = εK/(1 + ε)‖x̃‖2 which satisfies the condition that s ≤ K/‖x̃‖2, we get,

P
(
‖ỹ‖2 > (1 + ε)‖x̃‖2

)
≤
(

1− ε

1 + ε

)−K/2
exp (−εK/2)

= (1 + ε)K/2 exp (−εK/2)

using the fact that 1 + x ≤ exp
(
x− x2/2 + x3/3

)
we conclude that,

≤ exp
(
−ε2K/4 + ε3K/6

)
Since ε < 1, we have that −ε2K/4 + ε3K/6 < −ε2K/12 and hence,

≤ exp
(
−ε2K/12

)
Now we use the fact that ỹ2[j] is symmetrically distributed about its mean and so

P (‖ỹ‖ > (1 + ε)‖x̃‖ or ‖ỹ‖ < (1− ε)‖x̃‖) ≤ 2 exp
(
−ε2K/12

)
What we have show so far is that, by setting x̃ = xt − xs, we have that, for any s, t,

P (‖yt − ys‖ > (1 + ε)‖xt − xs‖ or ‖yt − ys‖ < (1− ε)‖xt − xs‖) ≤ 2 exp
(
−ε2K/12

)
Hence using union bound over all the n(n− 1)/2 pairs s, t,, we have that,

P (∃t, s s.t. ‖yt − ys‖ > (1 + ε)‖xt − xs‖ or ‖yt − ys‖ < (1− ε)‖xt − xs‖) ≤ n(n− 1) exp
(
−ε2K/12

)
Hence if K > 12 log(n(n−1))

ε2
, we can conclude that

P (∃t, s s.t. ‖yt − ys‖ > (1 + ε)‖xt − xs‖ or ‖yt − ys‖ < (1− ε)‖xt − xs‖) ≤ δ

The lemma statement is just another way of writing the above.
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