Machine Learning for Data Science (CS 4786)

Lecture 13: EM Algorithm for Gaussian Mixture Models and Why EM works!

1 Gaussian Mixture Models

Each 6 € © consist of mixture distribution 7 which is a distribution over the choices of the K clus-

ters, fi1, ..., ux € R? the choices of the K means for the corresponding gaussians and X1, ..., Yg
the choices of the K covariance matrices. The latent variables are cy, ..., ¢, the cluster assignments
for the n points and x1,...,x, are the n observations.

1.1 E-step

On iteration i, for each data point t € [n], set
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1.2 M-step for GMM
For the M-step (for MLE) we would like to find
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To this end note that
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For notational convenience define:
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Our goal is to find parameters that maximize L(p1.x, X1.5, 7).

M-step for mean: To optimize with respect to mean we take derivative and equate to 0,
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To maximize over p we set derivative equal to 0. Hence
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Or equivallently:
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M-step for mixture distribution: Since we want to optimize over 7 subject to the constraint

Zszl 7 = 1 (ie. its a distribution), we do so by introducing Lagrange variables. That is we want
to optimize the following term w.r.t. 7, and A
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Hence taking derivative of above w.r.t. m we get,
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Setting derivative to 0 we discover that
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Since 7 needs to be a valid distribution, this yields that
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However notice that since ng‘) is a distribution over K clusters, Y 5 S35, ,gz)(k:) =Y ,1=n.
Hence,
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M-step for Covariance: This one needs being able to take derivative w.r.t. matrices and so 1
will only sketch the proof here. Let us consider optimizing w.r.t. some ¥. It makes the problem
easier if we instead think of the problem as optimizing over Z,;l and then invert the solution.

Here are two facts that come in handy:
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and for any vector v,
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Hence equating to 0 we get that
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that is the weighted sample variance. (there is a bit of a fudge here since p; is also an
optimiation variable. But we skip the details of this for now.)

2 EM Algorithm: Why it works?

Log likelihood only decreases after one iteration of EM algorithm. Why?
We will show below that EM algorithm can never lead to a worsening of the objective in any
step and can only imrpvie likelihood.



log P(x1, ..., 2,00 ) = Z log P (x| +Y) (x’s drawn independently)
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Logarithm is a concave function and by Jensen’s inequality log(E[X]) > Ellog(X)| for any R.V.
X. Treat the term in red as the random variable and the probability distribution is specified by
QU now using Jensen,
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Since in M-step 00+ is exactly the maximizer of 37, 25:1 QUHY (¢ log (P (e, ct|00F1)), we
conclude that this term is larger than » )", Zgzl QU+ (¢y) log (P(z4,¢4|0)) and so
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Now note that P(xzy,c:|0®) = P(ci|xy, D) P(2]0®) = QU (¢) P(24/6) and so,
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Hence we have shown that running the EM algorithm yields, log P(z1, ..., 2,]0®) <log P(z1,...,2,|00TD),
that is the Likelihood value never decreases and could only improve.



