
Machine Learning for Data Science (CS 4786)

Lecture 13: EM Algorithm for Gaussian Mixture Models and Why EM works!

1 Gaussian Mixture Models

Each θ ∈ Θ consist of mixture distribution π which is a distribution over the choices of the K clus-
ters, µ1, . . . , µK ∈ Rd the choices of the K means for the corresponding gaussians and Σ1, . . . ,ΣK

the choices of the K covariance matrices. The latent variables are c1, . . . , cn the cluster assignments
for the n points and x1, . . . , xn are the n observations.

1.1 E-step

On iteration i, for each data point t ∈ [n], set

Q
(i)
t (ct) = P (ct|xt, θ(i−1))

Note that

Q
(i)
t (ct) = P (ct|xt, θ(i−1))

∝ p(xt|ctθ(i−1))× P (ct|θ(i−1))

∝ 1√
(2π)d|Σct |

exp
(
−(xt − µct)>Σct(xt − µct)/2

)
πct

1.2 M-step for GMM

For the M-step (for MLE) we would like to find

θ = argmax
θ∈Θ

n∑
t=1

K∑
ct=1

Q
(i)
t (ct) logP (xt, ct|θ)

To this end note that

n∑
t=1

K∑
ct=1

Q
(i)
t (ct) logP (xt, ct|θ) =

n∑
t=1

K∑
k=1

Q
(i)
t (k) (log φ(xt|µk,Σk) + log πk)

=

n∑
t=1

K∑
k=1

Q
(i)
t (k)

(
1

2
log

(
1

(2 ∗ 3.14)d|Σk|

)
− 1

2
(xt − µk)>Σ−1

k (xt − µk) + log πk

)

=
n∑
t=1

K∑
k=1

Q
(i)
t (k)

(
−1

2
log det(Σk)−

1

2
(xt − µk)>Σ−1

k (xt − µk) + log πk

)
+ constant terms
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For notational convenience define:

L(µ1:K ,Σ1:K , π) =

n∑
t=1

K∑
k=1

Q
(i)
t (k)

(
−1

2
log det(Σk)−

1

2
(xt − µk)>Σ−1

k (xt − µk) + log πk

)
Our goal is to find parameters that maximize L(µ1:K ,Σ1:K , π).

M-step for mean: To optimize with respect to mean we take derivative and equate to 0,

∂

∂µk
L(µ1:K ,Σ1:K , π) = −1

2

∂

∂µk

(
n∑
t=1

Q
(i)
t (k)(xt − µk)>Σ−1

k (xt − µk)

)

= −
n∑
t=1

Q
(i)
t (k)Σ−1

k (xt − µk) = −Σ−1
k

(
n∑
t=1

Q
(i)
t (k)(xt − µk)

)

To maximize over µk we set derivative equal to 0. Hence

n∑
t=1

Q
(i)
t (k)(xt − µk) =

n∑
t=1

Q
(i)
t (k)xt − µk

(
n∑
t=1

Q
(i)
t (k)

)
= 0

Or equivallently:

µk =

∑n
t=1Q

(i)
t (k)xt∑n

t=1Q
(i)
t (k)

M-step for mixture distribution: Since we want to optimize over π subject to the constraint∑K
k=1 πk = 1 (ie. its a distribution), we do so by introducing Lagrange variables. That is we want

to optimize the following term w.r.t. πk and λ

L(µ1:K ,Σ1:K , π) + λ(1−
K∑
k=1

πk)

Hence taking derivative of above w.r.t. π we get,

∂

∂πk

(
L(µ1:K ,Σ1:K , π) + λ(1−

K∑
k=1

πk)

)
=

∂

∂πk
L(µ1:K ,Σ1:K , π)− λ

But,

∂

∂πk
L(µ1:K ,Σ1:K , π) =

∂

∂πk

n∑
t=1

Q
(i)
t (k) log(πk) =

∑n
t=1Q

(i)
t (k)

πk

Hence,

∂

∂πk

(
L(µ1:K ,Σ1:K , π) + λ(1−

K∑
k=1

πk) +
K∑
i=1

λiπi

)
=

∑n
t=1Q

(i)
t (k)

πk
− λ
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Setting derivative to 0 we discover that

πk ∝
n∑
t=1

Q
(i)
t (k)

Since π needs to be a valid distribution, this yields that

πk =

∑n
t=1Q

(i)
t (k)∑K

k=1

∑n
t=1Q

(i)
t (k)

However notice that since Q
(i)
t is a distribution over K clusters,

∑K
k=1

∑n
t=1Q

(i)
t (k) =

∑n
t=1 1 = n.

Hence,

πk =

∑n
t=1Q

(i)
t (k)

n

M-step for Covariance: This one needs being able to take derivative w.r.t. matrices and so I
will only sketch the proof here. Let us consider optimizing w.r.t. some Σk. It makes the problem
easier if we instead think of the problem as optimizing over Σ−1

k and then invert the solution.

Here are two facts that come in handy:

∂

∂X
log det(X−1) = −X−1

and for any vector v,
∂

∂X
v>Xv = vv>

Now note that

∂

∂Σk
L(µ1:K ,Σ1:K , π) =

∂

∂Σk

(
n∑
t=1

Q
(i)
t (k)

(
−1

2
log det(Σk)−

1

2
(xt − µk)>Σ−1

k (xt − µk)
))

=

(
n∑
t=1

Q
(i)
t (k)

(
1

2
(Σ−1

k )−1 − 1

2
(xt − µk)(xt − µk)>

))

Hence equating to 0 we get that

Σk =

∑n
t=1Q

(i)
t (k)(xt − µk)(xt − µk)>∑n

t=1Q
(i)
t (k)

that is the weighted sample variance. (there is a bit of a fudge here since µk is also an
optimiation variable. But we skip the details of this for now.)

2 EM Algorithm: Why it works?

Log likelihood only decreases after one iteration of EM algorithm. Why?
We will show below that EM algorithm can never lead to a worsening of the objective in any

step and can only imrpvie likelihood.
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logP (x1, . . . , xn|θ(i+1)) =
n∑
t=1

logP (xt|θ(i+1)) (x’s drawn independently)

=
n∑
t=1

log

(
K∑
ct=1

P (xt, ct|θ(i+1))

)
(marginalizing over ct’s)

=
n∑
t=1

log

(
K∑
ct=1

Q(i+1)(ct)

Q(i+1)(ct)
P (xt, ct|θ(i+1))

)

Logarithm is a concave function and by Jensen’s inequality log(E[X]) ≥ E[log(X)] for any R.V.
X. Treat the term in red as the random variable and the probability distribution is specified by
Q(i+1), now using Jensen,

≥
n∑
t=1

K∑
ct=1

Q(i+1)(ct) log

(
P (xt, ct|θ(i+1))

Q(i+1)(ct)

)

=
n∑
t=1

K∑
ct=1

Q(i+1)(ct) log
(
P (xt, ct|θ(i+1))

)
−

n∑
t=1

K∑
ct=1

Q(i+1)(ct) log
(
Q(i+1)(ct)

)

Since in M-step θ(i+1) is exactly the maximizer of
∑n

t=1

∑K
ct=1Q

(i+1)(ct) log
(
P (xt, ct|θ(i+1))

)
, we

conclude that this term is larger than
∑n

t=1

∑K
ct=1Q

(i+1)(ct) log
(
P (xt, ct|θ(i))

)
and so

≥
n∑
t=1

K∑
ct=1

Q(i+1)(ct) log
(
P (xt, ct|θ(i))

)
−

n∑
t=1

K∑
ct=1

Q(i+1)(ct) log
(
Q(i+1)(ct)

)

Now note that P (xt, ct|θ(i)) = P (ct|xt, θ(i))P (xt|θ(i)) = Q(i+1)(ct)P (xt|θ(i)) and so,

=

n∑
t=1

K∑
ct=1

Q(i+1)(ct) log
(
P (xt|θ(i))×Q(i+1)(ct)

)
−

n∑
t=1

K∑
ct=1

Q(i+1)(ct) log
(
Q(i+1)(ct)

)
=

n∑
t=1

logP (xt|θ(i))

= logP (x1, . . . , xn|θ(i))

Hence we have shown that running the EM algorithm yields, logP (x1, . . . , xn|θ(i)) ≤ logP (x1, . . . , xn|θ(i+1)),
that is the Likelihood value never decreases and could only improve.
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