
Machine Learning for Data Science (CS 4786)

Lecture 2 & 3: Principal Component Analysis

The text in black outlines high level ideas. The text in blue provides simple math-
ematical details to “derive” or get to the algorithm or method. The text in red are
mathematical details for those who are interested.

1 Dimensionality Reduction and Linear Projection

We are provided with data points x1, . . . ,xn where each xt ∈ Rd is a d-dimensional vector. The
goal in dimensionality reduction is to compress these points into vectors y1, . . . ,yn ∈ RK where K
is smaller than d.

In this lecture we will consider dimensionality reduction through linear transformations, mean-
ing, the low dimensional representation yt for each datapoint xt is obtained by setting

yt = W>xt

where W defines the linear transformation given by a d × k matrix Notice that one can represent
the matrix W as

W = [w1, . . . ,wK ]

where w1, . . . ,wK are each d-dimensional vectors.

2 PCA to One Dimension (K = 1)

For the case when K = 1, yt[1] = w>
1 xt. Now note that arbitrary scaling of w1 to say αw1 for some

α ∈ R simply leads to yt[1]’s being scaled by α. Such scaling does not really affect our projections
however. Hence without loss of generality we can cimply set ‖w1‖2 = 1, that is find a vector of
unit norm.

The figure below illustrates the basic idea when we consider the projection down to only one
dimension. The points in blue are the original x1, . . . ,xn. w1 the first direction of projection is
illustrated in the figure by the red line. The points in green represent the reconstructions x̂1, . . . , x̂n.
The one dimensional representation y1[1], . . . ,yn[1] are illustrated by the lengths in the figure.
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Now the main question at hand boils down to, How do we pick the right linear transformation
W so a to retain as much information about the original data points as possible.

2.1 Maximizing Spread (variance)

Basic idea: Pick the directions along which data is maximally spread (or variance is high).

As an example in the illustration below we would like to pick the second option as the spread
if the points across the chosen direction is larger in the second figure.

How do we formalize this (for K = 1)?
Let us first consider the first direction to pick w1. We want to pick the direction long which
variance of y1[1], . . . ,yn[1] is largest. That is we want to pick the direction w1 (unit norm vector)
that maximize the sample variance in the projected direction which is given by:
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Thus the solution w1 is given by,
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Let µ = 1
n

∑n
t=1 xt. Now let us simplify the above expression further,

w1 = arg max
w:‖w‖2=1
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Where Σ is sample the covariance matrix.

The first direction we pick will be the the unit vector w1 that maximizes w>
1 Σw1

(Roughly speaking) Whenever we want to maximize (or minimize) a function subject to a constraint,
we can use the idea of Lagrange multipliers. What the result says is that there exists λ1 ∈ R such
that the solution to w1 can be alternatively written down as :

w1 = arg max
w∈Rd

w>Σw − λ ‖w‖22

To optimize the above we simply take derivative and equate to 0. This gives us

Σw1 − λw1 = 0

The direction w1 we obtain by maximizing the variance in the direction is some unit vector
that satisfies

Σw1 = λw1

But this is exactly the definition of an eigen vector of matrix Σ. In Dutch the word “eigen” means
self or own. Eigen vector of a matrix multiplied to the matrix results in a vector that is the just a
scaled version of the eigenvector itself.

So we see that w1 is an eigenvector of Σ. The next question is, which eigen vector to choose.
To this end note that we want to maximize w>

1 Σw1 and we just saw that Σw1 = λw1. Hence

w>
1 Σw1 = λ ‖w1‖22 = λ

Since we want to maximize the above quantity it stands to reason that we pick w1 to be the eigen
vector corresponding to the largest eigen value of Σ.
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3 What about K > 1?

For simplicity, for this section we shall assume that 1
n

∑n
t=1 xt = 0 because if not we can simply

center the points by subtracting the mean from each one.

A simple fact from linear algebra is that, if we consider any orthonormal basis of Rd given by
w1, . . . ,wd ∈ Rd, then any vector in Rd can be represented as a linear combination of the d basis.
Recall that orthonormal vectors are vectors w1, . . . ,wd such that each vector is of unit length, that
is

∀i ≤ d, ‖wi‖22 =

d∑
j=1

wi[j]
2 = 1

and the vectors are orthogonal to each other, that is

∀i, j s.t. i 6= j, w>
i wj = 0

The key idea we are going to use to produce the K dimensional representation of the n points
is that we shall first find orthonormal basis w1, . . . ,wd in which to represent each point xt. But
however we shall pick only K of the d basis w1, . . . ,wd and approximate the data points in the
this chosen K dimensional subspace spanned by w1, . . . ,wK . Thus the matrix W will be got by
considering only these K basis.

Since we can write any vector in d-dimension as a linear combination of the orthonormal basis,
let us write each

xt =

d∑
j=1

yt[j]wj (1)

where for each xt, yt[j] represents the coefficient on the jth basis wj . Now the K dimensional
representation of the point xt is given by the K numbers yt[1], . . . ,yt[K]. What this means is that
we can view the data point xt being approximated by the reconstruction

x̂t =
K∑
j=1

yt[j]wj (2)

Now further note that, since xt =
∑d

j=1 yt[j]wj and since w1, . . . ,wn are orthonormal, if we
consider W = [w1, . . . ,wK ],

W>xt = W>

 d∑
j=1

yt[j]wj

 =


yt[1]
·
·
·

yt[K]

 (3)

which coincides with our definition of linear transformation in the first section.
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3.1 View I: Maximize Total Variance

Basic idea: Pick the orthogonal directions along which data is maximally spread in each of the
coordinates.

How do we formalize this? We want to maximize the sum of the variances of yt’s. That is,
we want to maximize

K∑
j=1

1

n

n∑
t=1

(
yt[j]−

1

n

n∑
t=1

yt[j]

)2

=

K∑
j=1

1

n

n∑
t=1

(
w>

j xt −
1

n

n∑
t=1

w>
j xt

)2

That is we want to solve the optimization problem:

(w1, . . . ,wK) = argmax
orthonormal W
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To solve the above, first we note that we can solve w1 just as the K = 1 case which yields the top
eigen vector as solution for w1. Next we can solve w2, subject to it being orthogonal to w1 and
this exactly yields the second largest eigenvector. Next w3 is the third largest and so forth. Thus
the solution we get is the first K largest eigen vectors.

3.2 View II: Minimizing Reconstruction Error

Basic idea: Another way of thinking about which orthonormal basis to choose is to pick the basis
such that the reconstruction error is minimized. That is pick the orthonormal basis w1, . . . ,wK

such that
1

n

n∑
t=1

‖xt − x̂t‖22

is minimized. (See the figure on page 2).

Let us simplify the above term,
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2
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∥∥∥∥∥∥
2

2
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from the above to the next equation is not hard but just takes a bit of staring. Note that for any
vector v, ‖v‖22 = v>v. Expanding the above and noticing that wj ’s are orthonormal yields the
below. It’s ok if this step seems hard, just take it as given.

=
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n
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since xt’s are centered,

=
d∑

j=K+1

w>
j Σwj

The orthonormal basis w1, . . . ,wd that we shall pick are the ones that minimize the reconstruc-
tion error and are hence the orthonormal basis that minimize,

∑d
j=K+1w

>
j Σwj .

We again use the Lagrangian multipliers to rewrite the constrained minimization problem (with
the unit norm constraints) into an unconstrained minimization problem. Specifically we see that
there exists λ1, . . . , λd such that the orthonormal basis w1, . . . ,wd are the ones that minimize,

d∑
j=K+1

w>
j Σwj −

d∑
j=1

λj ‖wj‖22

Taking derivative and equating to 0 we find that for any index K + 1 ≤ j ≤ d,

Σwj − λjwj = 0

Thus again we find that the w’s are eigen vectors.

To minimize the reconstruction error we simply pick the eigen basis of Σ and retain K of them
while throwing away the remaining. Now since each wj is an eigen vector we have that

Σwj = λjwj

where λj is the corresponding eigen value. Now the question remains, which Eigen vector to keep
and which to throw away. To this end recall that we want to minimize

d∑
j=K+1

w>
j Σwj =

d∑
j=K+1

λjw
>
j wj =

d∑
j=K+1

λj

Thus it stands to reason that to minimize the above we pick wK+1, . . . ,wd to be the eigenvectors
with the d−K smallest eigenvalues.
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4 PCA Algorithm

What both the views tell us is that the matrix W we shall use for PCA is got by taking the
K eigenvectors corresponding to the top K eigen values. As for the PCA algorithm, one way
to implement it is to first compute the covariance matrix given the data. This can be done by
calculating the mean vector and then covariance matrix as

µ =
1

n

n∑
t=1

xt Σ =
1

n

n∑
t=1

(xt − µ)(xt − µ)>

Next we perform eigen decomposition of the matrix and take the top K eigen vectors and set

W =


w>

1

·
·

w>
K

 = eigs(Σ,K)

4.1 Projection to Lower Dimension

Projection is simply given by
yt = W (xt − µ)

The above is the version where we center xt’s which is represented by the fact that µ is subtracted
from each xt.

4.2 Reconstruction

Reconstruction of the data points based on low dimensional representation is given by

x̂t = W>yt + µ
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