Machine Learning for Data Science (CS4786)

Lecture 26

Fairness, Transparency and other Moral Issues in Machine Learning

Course Webpage :
http://www.cs.cornell.edu/Courses/csd4786/2016fa/



Announcements

e Survey 2, just over 80%
* Make sure you fill out the course eval

* (If the participation on this is above 90% | will still
drop worst assignment)
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@ For every user predict: Ads, products, news, ...
@ Have tons of data to learn this task well

@ Have right models that can learn from all this data

With Big Data comes Bigger Responsibilities . ..



Is ML FAIR, IMPARTIAL?
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Is ML FAIR, IMPARTIAL?

Prediction Fails Differently for
Black Defendants

AFRICAN
WHITE AMERICAN

Labeled Higher Risk,
But Didn’t Re-Offend

Labeled Lower Risk, Yet
Did Re-Offend

Overall, Northpointe's assessment tool correctly predicts
recidivism 61 percent of the time. But blacks are almost twice as
likely as whites to be labeled a higher risk but not actually re-
offend. It makes the opposite mistake among whites: They are
much more likely than blacks to be labeled lower risk but go on to

commit other crimes.
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WHY Is ML UNFAIR?

the algorifhms in themselves are neutral. “This program had absoluiely n;)thing to
do with race... but multi-variable equations,”



WHY IS ML UNFAIR?

@ Data collection, labeling etc. can have unintentional biases

o We learn from past data, historic biases

@ Data in itself nor algorithms explicitly know of social inequities
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FAIRNESS THROUGH BLINDNESS?

@ Ignore all protected attributes.
Eg. Don’t look at race, gender etc.

@ Problem: You don’t need to look to be able to predict

Eg. User visits “www.artofmanliness.com”
... highly likely to be male
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EG. REAL VS FAKE NAMES

@ Biases are often not intentional ...

@ Most training examples standard white American names: James,
John, Robert, Jennifer, Michael, ...

@ Ethnic names often unique, much fewer training examples

Most ML models aim for accuracy for the majority at the expense of
mistakes on the smaller protected class
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FAIRNESS THROUGH AWARENESS

Population
T : Protected subset

T : Rest of the population

P(Outcome|T") ~ P(Outcome|T°)
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Population

Eg. Fraction of people shown high
paying jobs in T and in T is equal
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EG. FAIR K-MEANS CLUSTERING (very naive)

K ,
Objective =3 3 x; - x[

j=1 tGC]

where r; = —— Xt

Fairness constraints: Vj € [K]|, Z 1, e = Z 1,7

tZCt:j tICt:j

Number of protected in cluster | = Number of unprotected in cluster |
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FAIR CLASSIFICATION

A view from a mile above:

Minimize Classification objective
(or whatever other surrogate loss you use usually)

Added Constraint: subject to proportion of labels in each
class being same for protected and
unprotected population
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FAIR CLASSIFICATION

* |s this good enough?

o Say there is this algorithm to select people to
invite to apply for this exclusive, credit card
with high annual fee

* One simple way to satisty the fairness constraint:

 Make offer to higher income people in the
unprotected class

 Make offer to lower income people in protected
class (in same proportion)

NOT REALLY FAIR!



FAIR CLASSIFICATION

A view from a mile above:

Minimize Classification objective
(or whatever other surrogate loss you use usually)



FAIR CLASSIFICATION

A view from a mile above:

Minimize Classification objective
(or whatever other surrogate loss you use usually)

subject to proportion of labels for
similar instances

INn each class being same for protected
and unprotected population

Added Constraint:



ts not always about fairness
There are other iIssues too!
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What news would user prefer to read...
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* Just because we can predict, should we?

* Say we have a fair, unbiased algorithm for
orediction

e Can there be other issues?
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Apples are extremely rich in important antioxidants,
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EXTREMIZING EFFECT OF ML

e Possible fixes:
e (Good contents is the best fix
 Mix up articles: provide both sides

 what if there are multiple sides and worse yet you
can't identity the sides

 Mix up user profiles from time to time (or have a
canonical user and every user Is mix of individual
and the canonical user)

* [Thisis a completely open topic ...

But a very important one ...
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TRANSPARENCY IN ML

@ Another issue: ML methods are complex and we don’t
understand semantic meaning

@ We need transparency of method for accountability

@ Transparency via interpretability.
o Provide explanation for each decision

o What makes an instance a negative instance according to the
algorithm



Sponsors

November 18th 2016 / New York University, NYC

Fairness, Accountability,
and Transparency

1In Machine Learning

Co-located with the Data Transparency Lab Conference and
the Workshop on Data and Algorithmic Transparency

The workshop is now over but a recording of the cvent will be
available later.

November 16-1%9th

Columbia University
New York City
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B® Microsoft

DATA M“ NYU Technology Law
LAB B and Policy Clinic



Time for General Questions



