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Fairness, Transparency and other Moral Issues in Machine Learning
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Announcements

• Survey 2, just over 80%  

• Make sure you fill out the course eval 

• (If the participation on this is above 90% I will still 
drop worst assignment)
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Data collection, labeling etc. can have unintentional biases

We learn from past data, historic biases

Data in itself nor algorithms explicitly know of social inequities
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Problem: You don’t need to look to be able to predict

Eg. User visits “www.artofmanliness.com”
. . . highly likely to be male
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EG. REAL VS FAKE NAMES

Biases are often not intentional . . .

Most training examples standard white American names: James,
John, Robert, Jennifer, Michael, . . .

Ethnic names often unique, much fewer training examples

Most ML models aim for accuracy for the majority at the expense of
mistakes on the smaller protected class
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FAIR CLASSIFICATION

Minimize Classification objective  
(or whatever other surrogate loss you use usually)

Added Constraint:
subject to proportion of labels for  
similar instances
in each class being same for protected  
and unprotected population

A view from a mile above:



Its not always about fairness 
There are other issues too!
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ML DREAM

Predict for every user what they would like
Show Ads, products, news, . . .

• Just because we can predict, should we?

• Say we have a fair, unbiased algorithm for 
prediction

• Can there be other issues?
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Vs
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• Possible fixes: 

• Good contents is the best fix

• Mix up articles: provide both sides

• what if there are multiple sides and worse yet you 
can’t identify the sides

• Mix up user profiles from time to time (or have a 
canonical user and every user is mix of individual 
and the canonical user)

• This is a completely open topic …

But a very important one …
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Another issue: ML methods are complex and we don’t
understand semantic meaning

We need transparency of method for accountability

Transparency via interpretability.
Provide explanation for each decision

What makes an instance a negative instance according to the
algorithm
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Time for General Questions


