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Announcements

• Survey 2 is out, due by Nov 26th 

• Topics lecture after thanksgiving on                    
“Fair and unbiased in machine learning”
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F CS GS P Y
1 0 0 1 0 1
2 0 1 0 1 0
3 1 1 1 1 1
4 0 0 0 0 0
5 0 0 1 0 0
6 0 0 1 0 1
7 0 0 0 0 0
8 0 0 1 0 1
9 0 0 0 0 0
10 0 0 1 0 1
11 0 0 1 0 0
12 0 0 1 0 1
13 0 0 1 0 1
14 0 0 0 0 0
15 0 0 0 0 0
16 0 0 1 0 0
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 1 0 1

=# calls
# samples

1
2

Central 
System1=

CS



REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

Central 
System

Call Police

Fire in Garage

Call you

Garage 
System

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

F CS GS P Y
1 0 0 1 0 1
2 0 1 0 1 0
3 1 1 1 1 1
4 0 0 0 0 0
5 0 0 1 0 0
6 0 0 1 0 1
7 0 0 0 0 0
8 0 0 1 0 1
9 0 0 0 0 0
10 0 0 1 0 1
11 0 0 1 0 0
12 0 0 1 0 1
13 0 0 1 0 1
14 0 0 0 0 0
15 0 0 0 0 0
16 0 0 1 0 0
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 1 0 1

=# calls
# samples

1
2

Central 
System1=

CS

???!!!



REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

Central 
System

Call Police

Fire in Garage

Call you

Garage 
System

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

F CS GS P Y
1 0 0 1 0 1
2 0 1 0 1 0
3 1 1 1 1 1
4 0 0 0 0 0
5 0 0 1 0 0
6 0 0 1 0 1
7 0 0 0 0 0
8 0 0 1 0 1
9 0 0 0 0 0
10 0 0 1 0 1
11 0 0 1 0 0
12 0 0 1 0 1
13 0 0 1 0 1
14 0 0 0 0 0
15 0 0 0 0 0
16 0 0 1 0 0
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 1 0 1

=# calls
# samples

1
2

Central 
System1=

CS

???!!!Too many rejections :(



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1

F CS GS P Y
1



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1

F CS GS P Y
1 0



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1

F CS GS P Y
1 0 1



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1

F CS GS P Y
1 0 1 0



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1

F CS GS P Y
1 0 1 0 1



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1

F CS GS P Y
1 0 1 0 1 0



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

F CS GS P Y
1 0 1 0 1 0
2 0 1 1 1 1
3 1 1 1 1 1
4 0 1 0 1 1
5 0 1 0 1 1
6 0 1 0 1 1
7 0 1 1 1 1
8 0 1 0 1 0
9 0 1 0 1 1
10 0 1 1 1 1
11 0 1 0 1 1
12 0 1 1 1 0
13 0 1 0 1 1
14 0 1 1 1 1
15 0 1 0 1 1
16 0 1 0 1 1
17 0 1 0 1 1
18 0 1 0 1 1
19 0 1 1 1 1
20 0 1 0 1 1
21 0 1 0 1 1
22 0 1 0 1 1
23 0 1 1 1 1
24 0 1 0 1 1
25 0 1 1 1 1

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1

F CS GS P Y
1 0 1 0 1 0



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7
CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

F CS GS P Y
1 0 1 0 1 0
2 0 1 1 1 1
3 1 1 1 1 1
4 0 1 0 1 1
5 0 1 0 1 1
6 0 1 0 1 1
7 0 1 1 1 1
8 0 1 0 1 0
9 0 1 0 1 1
10 0 1 1 1 1
11 0 1 0 1 1
12 0 1 1 1 0
13 0 1 0 1 1
14 0 1 1 1 1
15 0 1 0 1 1
16 0 1 0 1 1
17 0 1 0 1 1
18 0 1 0 1 1
19 0 1 1 1 1
20 0 1 0 1 1
21 0 1 0 1 1
22 0 1 0 1 1
23 0 1 1 1 1
24 0 1 0 1 1
25 0 1 1 1 1

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1

F CS GS P Y
1 0 1 0 1 0



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

Garage 
System

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Fire No Fire
0.05 0.95

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7
CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

F CS GS P Y
1 0 1 0 1 0
2 0 1 1 1 1
3 1 1 1 1 1
4 0 1 0 1 1
5 0 1 0 1 1
6 0 1 0 1 1
7 0 1 1 1 1
8 0 1 0 1 0
9 0 1 0 1 1

10 0 1 1 1 1
11 0 1 0 1 1
12 0 1 1 1 0
13 0 1 0 1 1
14 0 1 1 1 1
15 0 1 0 1 1
16 0 1 0 1 1
17 0 1 0 1 1
18 0 1 0 1 1
19 0 1 1 1 1
20 0 1 0 1 1
21 0 1 0 1 1
22 0 1 0 1 1
23 0 1 1 1 1
24 0 1 0 1 1
25 0 1 1 1 1

Y Call no call
CS on GS on 0.95 0.05
CS off GS on 0.7 0.3
CS on GS off 0.9 0.1
CS off GS off 0.01 0.99

Central 
System =1



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Garage 
System

Fire No Fire
0.05 0.95

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Central 
System =1

F CS GS P Y Weight

1 0 1 0 1 0
2 0 1 1 1 1
3 1 1 1 1 1
4 0 1 0 1 1
5 0 1 0 1 1
6 0 1 0 1 1
7 0 1 1 1 1
8 0 1 0 1 0
9 0 1 0 1 1

10 0 1 1 1 1
11 0 1 0 1 1
12 0 1 1 1 0
13 0 1 0 1 1
14 0 1 1 1 1
15 0 1 0 1 1
16 0 1 0 1 1
17 0 1 0 1 1
18 0 1 0 1 1
19 0 1 1 1 1
20 0 1 0 1 1
21 0 1 0 1 1
22 0 1 0 1 1
23 0 1 1 1 1
24 0 1 0 1 1
25 0 1 1 1 1

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

Y Call no 
callCS 

on
GS 
on

0.95 0.05
CS 
off

GS 
on

0.7 0.3
CS 
on

GS 
off

0.9 0.1
CS 
off

GS 
off

0.01 0.99



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Garage 
System

Fire No Fire
0.05 0.95

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Central 
System =1

F CS GS P Y Weight

1 0 1 0 1 0
2 0 1 1 1 1
3 1 1 1 1 1
4 0 1 0 1 1
5 0 1 0 1 1
6 0 1 0 1 1
7 0 1 1 1 1
8 0 1 0 1 0
9 0 1 0 1 1

10 0 1 1 1 1
11 0 1 0 1 1
12 0 1 1 1 0
13 0 1 0 1 1
14 0 1 1 1 1
15 0 1 0 1 1
16 0 1 0 1 1
17 0 1 0 1 1
18 0 1 0 1 1
19 0 1 1 1 1
20 0 1 0 1 1
21 0 1 0 1 1
22 0 1 0 1 1
23 0 1 1 1 1
24 0 1 0 1 1
25 0 1 1 1 1

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

Y Call no 
callCS 

on
GS 
on

0.95 0.05
CS 
off

GS 
on

0.7 0.3
CS 
on

GS 
off

0.9 0.1
CS 
off

GS 
off

0.01 0.99
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System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Garage 
System

Fire No Fire
0.05 0.95

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Central 
System =1

F CS GS P Y Weight

1 0 1 0 1 0
2 0 1 1 1 1
3 1 1 1 1 1
4 0 1 0 1 1
5 0 1 0 1 1
6 0 1 0 1 1
7 0 1 1 1 1
8 0 1 0 1 0
9 0 1 0 1 1

10 0 1 1 1 1
11 0 1 0 1 1
12 0 1 1 1 0
13 0 1 0 1 1
14 0 1 1 1 1
15 0 1 0 1 1
16 0 1 0 1 1
17 0 1 0 1 1
18 0 1 0 1 1
19 0 1 1 1 1
20 0 1 0 1 1
21 0 1 0 1 1
22 0 1 0 1 1
23 0 1 1 1 1
24 0 1 0 1 1
25 0 1 1 1 1

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

Y Call no 
callCS 

on
GS 
on

0.95 0.05
CS 
off

GS 
on

0.7 0.3
CS 
on

GS 
off

0.9 0.1
CS 
off

GS 
off

0.01 0.99

Weigh each sample differently!



Central 
System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Garage 
System

Fire No Fire
0.05 0.95

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Central 
System =1

F CS GS P Y Weight

1 0 1 0 1 0 0.1
2 0 1 1 1 1 0.1
3 1 1 1 1 1 0.99
4 0 1 0 1 1 0.1
5 0 1 0 1 1 0.1
6 0 1 0 1 1 0.1
7 0 1 1 1 1 0.1
8 0 1 0 1 0 0.1
9 0 1 0 1 1 0.1

10 0 1 1 1 1 0.1
11 0 1 0 1 1 0.1
12 0 1 1 1 0 0.1
13 0 1 0 1 1 0.1
14 0 1 1 1 1 0.1
15 0 1 0 1 1 0.1
16 0 1 0 1 1 0.1
17 0 1 0 1 1 0.1
18 0 1 0 1 1 0.1
19 0 1 1 1 1 0.1
20 0 1 0 1 1 0.1
21 0 1 0 1 1 0.1
22 0 1 0 1 1 0.1
23 0 1 1 1 1 0.1
24 0 1 0 1 1 0.1
25 0 1 1 1 1 0.1

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

Y Call no 
callCS 

on
GS 
on

0.95 0.05
CS 
off

GS 
on

0.7 0.3
CS 
on

GS 
off

0.9 0.1
CS 
off

GS 
off

0.01 0.99
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System

Call youCall Police

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

Fire in Garage

Call you

REJECTION SAMPLING

Example:

What about �P̂(X
v

= 1�observation) − P(X
v

= 1�observation)� ?

IMPORTANCE SAMPLING

More generally importance sampling is given by:
Draw x1, . . . ,xn

∼ Q

Notice that

E
X∼P

[f (X)] = E
X∼Q

� P(X)
Q(X) f (X)�

Hence,

P̂(X = x) ≈ 1
n

n�
t=1

1{x
t

= x} P(X = x)
Q(X = x)

Idea draw samples from Q but re-weight them

Garage 
System

Fire No Fire
0.05 0.95

CS On Off
Fire 0.99 0.01

No Fire 0.1 0.9

P Call no call
CS on 1 0
CS off 0.01 0.99

Central 
System =1

F CS GS P Y Weight

1 0 1 0 1 0 0.1
2 0 1 1 1 1 0.1
3 1 1 1 1 1 0.99
4 0 1 0 1 1 0.1
5 0 1 0 1 1 0.1
6 0 1 0 1 1 0.1
7 0 1 1 1 1 0.1
8 0 1 0 1 0 0.1
9 0 1 0 1 1 0.1

10 0 1 1 1 1 0.1
11 0 1 0 1 1 0.1
12 0 1 1 1 0 0.1
13 0 1 0 1 1 0.1
14 0 1 1 1 1 0.1
15 0 1 0 1 1 0.1
16 0 1 0 1 1 0.1
17 0 1 0 1 1 0.1
18 0 1 0 1 1 0.1
19 0 1 1 1 1 0.1
20 0 1 0 1 1 0.1
21 0 1 0 1 1 0.1
22 0 1 0 1 1 0.1
23 0 1 1 1 1 0.1
24 0 1 0 1 1 0.1
25 0 1 1 1 1 0.1

GS On Off
Fire 0.9 0.1

No Fire 0.3 0.7

Y Call no 
callCS 

on
GS 
on

0.95 0.05
CS 
off

GS 
on

0.7 0.3
CS 
on

GS 
off

0.9 0.1
CS 
off

GS 
off

0.01 0.99

21*0.1 + 1x0.99

24*0.1 + 1x0.99



IMPORTANCE SAMPLING

We really want to draw from distribution P.
But we can only draw from distribution Q easily
Trick:

Draw x1, . . . ,xn

∼ Q

Re-weight each sample x

t

by P(X = x

t

)�Q(X = x

t

)



IMPORTANCE SAMPLING

Why does it work?

E
X∼P

[f (X)] =�
x

P(X = x)f (x)
=�

x

Q(X = x)� P(X = x)
Q(X = x) f (x)�

= E
X∼Q

� P(X)
Q(X) f (X)�

≈ 1
n

n�
t=1

P(X = x

t

)
Q(X = x

t

) f (xt

)
Example: f (X) = 1{X ∈ Set}, then E

X∼P

[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{x
t

∈ Set} P(X=x

t

)
Q(X=x

t

)
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Why does it work?
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P (1) = 0.9, 8j 6= 1 P (j) = 0.1/5 8j Q(j) = 1/6
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Why does it work?
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1{xt 2 {2, 4, 6}}P (xt)

Q(xt)
=

1

n

nX

t=1

1{xt 2 {2, 4, 6}}0.1/5
1/6

What is P(even)?
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Why does it work?

E
X∼P

[f (X)] =�
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P(X = x)f (x)
=�

x
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= E
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≈ 1
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t
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)
Example: f (X) = 1{X ∈ Set}, then E

X∼P

[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{x
t

∈ Set} P(X=x

t

)
Q(X=x

t

)

Set = {2, 4, 6}

P (1) = 0.9, 8j 6= 1 P (j) = 0.1/5 8j Q(j) = 1/6

1

n

nX

t=1

1{xt 2 {2, 4, 6}}P (xt)

Q(xt)
=

1

n

nX

t=1

1{xt 2 {2, 4, 6}}0.1/5
1/6

= 0.12⇥ 1

n

nX

t=1

1{xt 2 {2, 4, 6}} ⇡ 0.12⇥ 0.5 = 0.06

What is P(even)?



IMPORTANCE SAMPLING

Likelihood weighting:
Topologically sort variables (parents first children later)
For t = 1 to n (number of samples)

Set w

t

= 1
For i = 1 to N (number of variables)

If X

i

is observed,
Set w

t

← w

t

⋅ P(X
i

= x

i

�Parents(X
i

) = already sampled)
Set x

t

i

= x

i

(the observed value)
Else, sample x

t

i

∼ P(X
i

�Parents(X
i

) = already sampled)
End For

End For
Output,

P(Variable = value�Observation) = ∑n

t=1 w

t

1{Variable = value}
∑n

t=1 w

t
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HIDDEN MARKOV MODEL (HMM)

Example: 

But you don’t observe location
(dark room)

You hear how close the bot is!

What you hear:

Can you catch the Bot?

+ noise



HIDDEN MARKOV MODEL (HMM)

S1 S2 S3

X1 X2 X3

Xt’s are what you hear (observation) 

St’s are the unseen locations (states) 

Eg: for m x m grid we have, K = m  states2

Number of alphabets = # colors you can observe
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HIDDEN MARKOV MODEL (HMM)

S1 S2 S3

X1 X2 X3

Eg: for m x m grid we have, K = m  states2

Transition matrix is K x K (too large)

Use sampling to do approximate inference
Number of samples n << m4
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HIDDEN MARKOV MODEL (HMM)

Eg: say observations were 

Rejection sampling: Reject samples that don’t match observations

Most samples rejected
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HIDDEN MARKOV MODEL (HMM)

Eg: say observations were 

Importance weighting:  weight samples

P(    | X3=9)    P(    | X1=13)    P(    | X2=8)    P(    | X4=14)    P(    | X5=19)    P(    | X5=24)    x x x x x
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P(    | X2)    P(    | X1)

HMM PARTICLE FILTER

Use multiple samples and track each ones weights.

P(    | X3)    P(    | X4)P(    | X5)    P(    | X5)    

• This is same as 6 separate samples

• Instead of tracking each sample’s weight, resample 
according to weights
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HMM PARTICLE FILTER

Use multiple samples and track each ones weights.

P(    | X3)    

• On every round, transfer particles from previous states 
according to transition probability

• Resample particles according to P(observation|state)

• Use new particles to proceed

P(    | X4)P(    | X5)    P(    | X5)    



• Inference time only depends on number of samples 

• Of course more the samples the better accuracy 

• Often we don’t need too many samples. Why ?

HMM PARTICLE FILTER

Use multiple samples and track each ones weights.



Gibbs Sampling
• Repeat n times for, n samples, 

• Start with arbitrary value for variables 

• Replace each variable by new sample from 
P(Variable| all other variables) 

• Go over all variables multiple times 

• Return final sample of the N variables



VARIATIONAL INFERENCE

Basic idea: we want to infer P(Unobserved�Observed)
We create a new parametric distribution Q✓(Unobserved)where
✓ is picked based on Obervations
We pick ✓ such that, Q✓ is close to P(Unobserved�Observed)
Closeness measured using KL divergence
Mean-field approximation,

Q✓(X1, . . . ,Xm

) = m�
j=1

Q✓
j

(X
j

)


