
Machine Learning for Data Science (CS4786)
Lecture 23

Message Passing and Learning in Graphical Models

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2016fa/



Announcement

• Competition 1 feedback will be posted by end of 
this weekend. 

• Overall excellent performance, reports look 
good, great work! 

• Competition 2 will be posted tonight, its a focused 
one based on HMM example in class
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BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs
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• Nodes in the Bayesian network propagate beliefs or 
messages to their neighbors over multiple iterations 

• Belief’s are vectors 

• Messages to children, belief about own value 

• Messages to parents, beliefs about parents’ value 

• Evidence for each node takes into account 
observations
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(Hopefully) All the nodes converge on their beliefs



• Compute probability of fire in kitchen using 
messages received in last round
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Think of variables as nodes in a network, each node is allowed to
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Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs

⇥ P (Xi|Parent(Xi))

⇥ (Product-of-all-messages-but-one-from-Xj)

Evidence-for-Xi

Mi 7!j =

(from previous round)

If Xj is the child of Xi :

(xi)

X

all parents’ values

 



• On each round: Receive messages from previous round

BELIEF PROPAGATION

Think of variables as nodes in a network, each node is allowed to
chat with its neighbors

Adjacent nodes receive messages from neighbors telling the node
how to update its belief

Each node in turn sends messages to its neighbors:
based on observation, previous received messages, marginal and
conditional distributions telling the other how to update beliefs

(Hopefully) All the nodes converge on their beliefs
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from previous round (t-1)

Message from node Xi to Child Xk on round t

t
Mi 7!k(xi) =

X

Parents(Xi)

EXi(xi)P (Xi = xi|Parents(Xi)) (product of all messages but one from Xj)
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P (Xi = xi|Observation) /
X

values of Parent(Xi)

EXi(xi)⇥ P (Xi = xi|Parent(Xi))⇥ Product of all messages

After convergence:
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We have inference, what about learning 
parameters for the model from data?



PARAMETER ESTIMATION (LEARNING)

What are the parameters for a Baysian Network?

The conditional probability distributions/tables/density functions



PARAMETER ESTIMATION (LEARNING)

What are the parameters for a Baysian Network?
The conditional probability distributions/tables/density functions



PARAMETER ESTIMATION (LEARNING)

MLE: n independent samples (X1
1, . . . ,X

1
N

), . . . , (Xn

1 , . . . ,X
n

N

)
where each (Xt

1, . . . ,X
t

N

) is drawn from the Bayesian network

arg max
✓

n�
t=1

log(P✓(Xt

1, . . . ,X
t

N

))
= arg max

✓

n�
t=1

N�
i=1

log(P✓(Xt

i

�Parent(Xt

i

)))
If ✓

i

is the parameter only involving P✓(Xt

i

�Parent(Xt

i

)) then

✓MLE

i

= arg max
✓

i

n�
t=1

log(P✓
i

(Xt

i

�Parent(Xt

i

)))



PARAMETER ESTIMATION (LEARNING)

MLE: n independent samples (X1
1, . . . ,X

1
N

), . . . , (Xn

1 , . . . ,X
n

N

)
where each (Xt

1, . . . ,X
t

N

) is drawn from the Bayesian network

arg max
✓

n�
t=1

log(P✓(Xt

1, . . . ,X
t

N

))
= arg max

✓

n�
t=1

N�
i=1

log(P✓(Xt

i

�Parent(Xt

i

)))
If ✓

i

is the parameter only involving P✓(Xt

i

�Parent(Xt

i

)) then

✓MLE

i

= arg max
✓

i

n�
t=1

log(P✓
i

(Xt

i

�Parent(Xt

i

)))

In this scenario, how do we learn conditional probability 
tables?
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Simple case of finite outcomes
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= empirical conditional probability table
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What is the problem? 
Hint: think of the HMM example
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PARAMETER ESTIMATION: LATENT VARIABLES

M-step for simple case of finite outcomes

✓
(j)
i

= empirical conditional probability table weighted by Q

(j)

For HMM this is called the Baum Welch algorithm

E-step computed using inference 
How?

• So if we had inference, learning follows easily via 
EM algorithm 

• M-step is simply computing weighted MLE 



INFERENCE IS COMPUTATIONALLY HARD!

Belief propagation is exact on trees
For general graphs, belief propagation need not work
Inference for general graphs can be computationally hard

Can we perform inference approximately?



WHAT IS APPROXIMATE INFERENCE?

Obtain P̂(X
v

�Observation) that is close to P(X
v

�Observation)
Additive approximation:

�
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v

�Observation) − P(X
v

�Observation)� ≤ ✏
Multiplicative approximation:

(1 − ✏) ≤ P̂(X
v

�Observation)
P(X

v

�Observation) ≤ (1 + ✏)



APPROXIMATE INFERENCE

Two approaches:

Inference via sampling:
generate instances from the model, compute marginals

Use exact inference but move to a close enough simplified model


