
Machine Learning for Data Science (CS4786)
Lecture 20

Finish HMM, Inference in Graphical Models

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2016fa/



ANNOUNCEMENT

Good job on competition I, report due today
No lecture Tuesday, Nov 8th!
Next Thursday Nov 10th, guest lecture by Prof. Kilian Weinberger
on TSNE



HIDDEN MARKOV MODEL (HMM)

S1 S2 S3

X1 X2 X3

Parameters: Transition probability matrix 
       Emission probability matrix

T

E



INFERENCE IN HMM

S1 S2 S3

X1 X2 X3

messageSt�1 7!St
(k) = P (St = k,X1, . . . , Xt�1)

messageSt+1 7!St
(k) = P (Xn, . . . , Xt+1|St = k)

P (St = k|X1, . . . , Xn) / messageSt�1 7!St
(k)⇥messageSt+1 7!St

(k)⇥ P (Xt|St = k)



INFERENCE IN HMM

S1 S2 S3

X1 X2 X3

Forward:

messageSt�1 7!St
(k) = P (St = k,X1, . . . , Xt�1)

messageSt+1 7!St
(k) = P (Xn, . . . , Xt+1|St = k)

P (X1, . . . , Xt�1, St = k) =
KX

j=1

P (St = k|St�1 = j)P (Xt�1|St�1 = j)P (X1, . . . , Xt�2, St�1 = j)

messageSt�1 7!St
(k) =

KX

j=1

P (St = k|St�1 = j)P (Xt�1|St�1 = j)messageSt�2 7!St�1
(j)



INFERENCE IN HMM

messageSt�1 7!St
(k) = P (St = k,X1, . . . , Xt�1)

messageSt+1 7!St
(k) = P (Xn, . . . , Xt+1|St = k)

S1 S2 S3

X1 X2 X3

Backward:

P (Xn, . . . , Xt+1|St = k) =
KX

j=1

P (Xn, . . . , Xt+2|St+1 = j)P (Xt+1|St+1 = j)P (St+1 = j|St = k)

messageSt+1 7!St
(k) =

KX

j=1

messageSt+2 7!St+1
(j)P (Xt+1|St+1 = j)P (St+1 = j|St = k)



LEARNING PARAMETERS FOR HMM

Now that we have algorithm for inference, what about learning
Given observations, how do we estimate parameters for HMM?
Three guesses . . .



EM FOR HMM (BAUM WELCH)

EM algorithm of course, for HMM its referred to as Baum Welch
algorithm
Initialize Transition and Emission probability tables arbitrarily
For i = 1 to convergence:

E-step For every state variable t ∈ {1, . . . ,n},
Use forward-backward algorithm to compute probabilities of latent
variables given obervation

M-step Optimize weighted log likelihood as usual:

✓(i) = arg max
✓∈⇥ �S1,...,n

P(S1,...,n�X1,...,n,✓
(i−1)) log P(X1,...,n,S1,...,n�✓)



LETS SIMPLIFY M-STEP

log P(X1,...,n,S1,...,n�✓) = log� n�
t=1

P(Xt�St,✓) n�
t=1

P(St�St−1,✓)�
= n�

t=1
log P(Xt�St,✓) + n�

t=1
log P(St�St−1,✓)

Hence,

�
S1,...,n

P(S1,...,n�X1,...,n,✓
(i−1)) log P(X1,...,n,S1,...,n�✓)

= n�
t=1

K�
st=1

P(St = st�X1,...,n,✓
i−1) log P(Xt�St = st,✓)

+ n�
t=1

K�
st,st−1=1

P(St = st,St−1 = st−1�X1,...,n,✓
i−1) log P(St�St−1,✓)



E-STEP

Only need to compute P(St = st�X1,...,n,✓
i−1) and

P(St = st,St−1 = st−1�X1,...,n,✓
i−1) using forward-backward

First term is immediate

P(St = st�X1,...,n,✓
i−1)∝ mSt−1�St(st) ⋅mSt+1�St(st) ⋅ E(i−1)[st,Xt]

For second term,

P(St = si,St−1 = st−1�X1,...,n,✓
i−1)

∝ mSt−1�St(st)T(i−1)[st−1, st]P(St−1 = st−1�X1,...,n,✓
i−1)

∝ mSt−1�St(st)T(i−1)[st−1, st]mSt−2�St−1(st−1)mSt�St−1(st−1)E(i−1)[st−1,Xt−1]
Why?



E-STEP

P(St = st,St−1 = st−1�X1,...,n,✓
i−1)

= P(St = st, �St−1 = st−1,X1,...,n,✓
t−1)P(St−1 = st−1�X1,...,n,✓

i−1)
= P(St = st, �St−1 = st−1,Xt,...,n,✓

i−1)P(St−1 = st−1�X1,...,n,✓
i−1)

∝ P(Xt,...,n�St = st,St−1 = st−1,✓
i−1)

P(St = st�St−1 = st−1,✓
i−1)P(St−1 = st−1�X1,...,n,✓

i−1)
∝ P(Xt,...,n�St = st,✓

i−1)
T(i−1)[st−1, st]P(St−1 = st−1�X1,...,n,✓

i−1)
∝ mSt−1�St(st) ⋅ T(i−1)[st−1, st] ⋅ P(St−1 = st−1�X1,...,n,✓

i−1)
∝ mSt−1�St(st) ⋅ T(i−1)[st−1, st]

mSt−2�St−1(st−1) ⋅mSt�St−1(st−1) ⋅ E(i−1)[st−1,Xt−1]



BAUM WELCH ALGORITHM

Initialize T0, E0 probability tables
For i = 1 to convergence

E-step:
Run Forward-Backward algorithm and compute messages
For every t compute P(St = st,St−1 = st−1�X1,...,n,✓i−1) and
P(St = st�X1,...,n,✓i−1) as in previous slides

M-step:

∀u,v T(i)[u,v] = ∑n
t=2 P(St = v,St−1 = u�X1,...,n,✓

i−1)
∑n

t=2 P(St−1 = u�X1,...,n,✓i−1)
∀v, e E(i)[v, e] = ∑n

t=1 P(St = v�X1,...,n,✓
i−1) ⋅ 1Xt=e∑n

t=1 P(St = v�X1,...,n,✓i−1)



Inference for general BN



BAYESIAN NETWORKS

Directed acyclic graph (DAG): G = (V,E)
Joint distribution P✓ over X1, . . . ,Xn that factorizes over G:

P✓(X1, . . . ,Xn) = N�
i=1

P✓(Xi�Parent(Xi))

Hence Bayesian Networks are specified by G along with CPD’s
over the variables (given their parents)



VARIABLE ELIMINATION: EXAMPLES

• Marginals are enough:

P (Xj = xj , Xk = xk|Xi = xi, Xh = xh) =
P (Xj = xj , Xk = xk, Xi = xi, Xh = xh)

P (Xi = xi, Xh = xh)



VARIABLE ELIMINATION: EXAMPLES

X1 X2

X3

X4



VARIABLE ELIMINATION: EXAMPLES

X1 X2

X3

X4

P (X4) =
X

x1

X

x2

X

x3

P (X1 = x1, X2 = x2, X3 = x3, X4)

=
X

x1

 
P (X1 = x1)

X

x2

 
P (X2 = x2|X1 = x1)P (X4|X2 = x2)

 
X

x3

P (X3 = x3|X2 = x2)

!!!

=
X

x1

 
P (X1 = x1)

 
X

x2

P (X2 = x2|X1 = x1)P (X4|X2 = x2)

!!



VARIABLE ELIMINATION: BAYESIAN NETWORK

Initialize List with conditional probability distributions

Pick an order of elimination I for remaining variables

For each Xi ∈ I
Find distributions in List containing variable Xi and remove them

Define new distribution as the sum (over values of Xi) of the
product of these distributions

Place the new distribution on List

End

Return List



VARIABLE ELIMINATION: ORDER MATTERS

X1

X2 X3 XnX3

Right order: O(n) 

Wrong order: O(2 )n



MESSAGE PASSING

Often we need more than one marginal computation

Over variables we need marginals for, there are many common
distributions/potentials in the list

Can we exploit structure and compute these intermediate terms
that can be reused?

Eg. forward backward algorithm for HMM


