Machine Learning for Data Science (CS4786)

Lecture 18

Graphical Models and Hidden Markov Models

Course Webpage :
http://www.cs.cornell.edu/Courses/csd4786/2016fa/



BAYESIAN NETWORKS

» Bayes net: directed acyclic graph + P(nodel|parents)
* Directed acyclic graph G = (V,E)
 Edges going from parent nodes to child nodes

e Direction indicates parent “generates” child

* Provide conditional probability table/distribution
P(nodel|parents)

N
P(X1,...,Xn) = | | P(Xi|Parents(X;))
1=1



REPRESENTATIONAL POWER

@ Not all joint distributions can be represented by Bayesian
Networks

Qo Eg X1 L Xy ‘ X3, Xo and X3 1 X5 ‘ X1, X4
This dependence can never be captured by a bayesian network,
Why?



REPRESENTATIONAL POWER

@ Not all joint distributions can be represented by Bayesian
Networks

Qo Eg X1 L Xy ‘ X3, Xo and X3 1 X5 ‘ X1, X4
This dependence can never be captured by a bayesian network,
Why?

Which distributions can be represented by Bayesian networks?



LOCAL MARKOV PROPERTY

@ Fach variable is conditionally independent of its non-descendants
given its parents

@ Any joint distribution satistying the local markov property w.r.t.
graph factorizes over the graph

Why"?



FACTORIZING JOINT PROBABILITY

@ Fact about DAG: we obtain an ordering of nodes (called
topological sort) such that for every directed edge between X; to
X;, X; appears before X; in sorted order.

@ Assume nodes are arranged according to some topological sort

@ For any distribution we have:
N
Po(X1,....Xn) = [ [ Pe(XilX1, ..., Xi1)

1=1
N

= H Pe (Xi\Parents(Xi))
1=1



GRAPHICAL MODELS

Two main guestions

* [earning/estimation: Given observations, can we
learn the parameters for the graphical model 7

* |Inference: Given model parameters, can we
answer gueries about variables in the model

* Eg. what is the most likely value of a latent
variable given observations

 Eg. What is the distribution of a particular
variable conditioned on others



HIDDEN MARKOV MODEL (HMM)

* Speech recognition

 Natural language processing models
* Robot localization

e User attention modeling

* Medical monitoring

Time! ... sequence of observations



MARKOV MODEL

* Each node is identically distributed given its
predecessor (stationary)

* The values the nodes take are called states
e Parameters”?
* P(S1) the initial probability table

* P(SiSt1) the transition probabilities



MARKOV MODEL

Bot tends to follow outlined path, but with some probability
jumps to arbitrary neighbor

* Number of states: 25 (one for each location)

* For white boxes probability of jJumping to any of the 4
neighbors is same 1/4

* For Blue boxes, probability of following path is 0.9 and
jumping to some other neighbor is 0.0333333




MARKOV MODEL

* |f we observe the bot long enough, we get an
estimate of its behavior (the transition table of
jumping from state to state)

* |t we observe enough number of times, we can also
estimate initial distribution over states



MARKOV MODEL

* Inference question: what is probability that we will
be in state k at time t? P(S; = k)7

Answer:
K K
St_k Z Z P :517---7St—1:St—175t:k)
81:1 St_1:1
K K t—1
:Z Z H S_SZ’S@ 1 = S;— 1)><P(St—/€|5t 1 = St— 1))

For every t we can repeat the above or...

K
P(St — ]‘C) — Z P(St — ]‘C‘St_l — St—l)P(St—l — St—l)

St—1=1

recursively compute probability of previous state



MARKOV MODEL

* As time goes by, P(St = k) approaches a fixed
distribution called stationary distribution

* Without any further observations, you are unlikely to
find the bot on a new run (only by luck)



HIDDEN MARKOV MODEL (HMM)

Same example: 2@)})

But you don't observe location
(dark room)

You hear how close the bot Is!

X;’s are loudness of what you hear



HIDDEN MARKOV MODEL (HMM)
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* Both during the initial training/estimation phase,
you never see the bot you only hear it

* But you hear it at any point in time
* We will come back to learning next class.

* What is probability that bot will be In state k at time
t given the entire sequence of observations?

P(St — k‘Xl,,XN)(?



INFERENCE IN HMM

P(S, = k| X1,...,XnN)
x P(Xes1,. . Xn|S: =k, X1,..., X)P(S; = k|X1,..., X;)
X P(Xii1,. o, XN|S: =k, X1, X)P(S: =k, X1, .., X3)
X P(Xyi1se  XNISe =k, X1, X)) P(Xe|Se = b, Xa,y ., Xem1)P(Sy = b, X1, ..., Xy—1)
= P(Xyi1,.. . XN|S: = K)P(X,|S; = K)P(S: = k, X1,..., X¢_1)

We know P(Xt\St — k)78 and P(St‘st_l)
Compute P(X;11,...,Xn) and P(S; =k, X1,..., Xy_1) recursively.



Real World Applications

» Speech recognition HMMSs:
= Observations are wave forms (continuous valued)

= States are specific positions in specific words (so, tens
of thousands)

= Robot tracking:
= Observations are range readings (continuous)
= States are positions on a map (continuous)

= Machine translation HMMs:
= Observations are words (tens of thousands)
= States are translation options



