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BAYESIAN NETWORKS

• Bayes net: directed acyclic graph + P(node|parents)

• Directed acyclic graph G = (V,E)

• Edges going from parent nodes to child nodes

• Direction indicates parent “generates” child

• Provide conditional probability table/distribution 
P(node|parents)

P (X1, . . . , XN ) =
NY

i=1

P (Xi|Parents(Xi))



REPRESENTATIONAL POWER

Not all joint distributions can be represented by Bayesian
Networks
Eg. X1 ⊥ X4 � X3,X2 and X3 ⊥ X2 � X1,X4
This dependence can never be captured by a bayesian network,
Why?

Which distributions can be represented by Bayesian networks?
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LOCAL MARKOV PROPERTY

Each variable is conditionally independent of its non-descendants
given its parents

Any joint distribution satisfying the local markov property w.r.t.
graph factorizes over the graph

Why?



FACTORIZING JOINT PROBABILITY

Fact about DAG: we obtain an ordering of nodes (called
topological sort) such that for every directed edge between Xi to
Xj, Xi appears before Xj in sorted order.
Assume nodes are arranged according to some topological sort
For any distribution we have:

P✓(X1, . . . ,XN) = N�
i=1

P✓(Xi�X1, . . . ,Xi−1)
= N�

i=1
P✓(Xi�Parents(Xi))



Two main questions
• Learning/estimation: Given observations, can we 

learn the parameters for the graphical model ?

• Inference: Given model parameters, can we 
answer queries about variables in the model

• Eg. what is the most likely value of a latent 
variable given observations

• Eg. What is the distribution of a particular 
variable conditioned on others 

GRAPHICAL MODELS

A graph whose nodes are variables X1, . . . ,XN

Graphs are an intuitive way of representing relationships between
large number of variables

Allows us to abstract out the parametric form that depends on ✓
and the basic relationship between the random variables.



HIDDEN MARKOV MODEL (HMM)

• Speech recognition 

• Natural language processing models 

• Robot localization 

• User attention modeling 

• Medical monitoring

Time! … sequence of observations



MARKOV MODEL

S1 S2 S3

• Each node is identically distributed given its 
predecessor (stationary) 

• The values the nodes take are called states 

• Parameters?  

• P(S1) the initial probability table 

• P(St|St-1) the transition probabilities



MARKOV MODEL

Bot tends to follow outlined path, but with some probability 
jumps to arbitrary neighbor 
• Number of states: 25 (one for each location) 
• For white boxes probability of jumping to any of the 4 

neighbors is same 1/4 
• For Blue boxes, probability of following path is 0.9 and 

jumping to some other neighbor is 0.0333333



MARKOV MODEL

• If we observe the bot long enough, we get an 
estimate of its behavior (the transition table of 
jumping from state to state) 

• If we observe enough number of times, we can also 
estimate initial distribution over states



MARKOV MODEL

• Inference question: what is probability that we will 
be in state k at time t?

Answer:

P (St = k)?

P (St = k) =
KX

s1=1

. . .
KX

st�1=1

P (S1 = s1, . . . , St�1 = st�1, St = k)

=
KX

s1=1

. . .
KX

st�1=1

t�1Y

i=1

(P (Si = si|Si�1 = si�1)⇥ P (St = k|St�1 = st�1))

For every t we can repeat the above or…

P (St = k) =
KX

st�1=1

P (St = k|St�1 = st�1)P (St�1 = st�1)

recursively compute probability of previous state



MARKOV MODEL

• As time goes by, P(St = k) approaches a fixed 
distribution called stationary distribution 

• Without any further observations, you are unlikely to 
find the bot on a new run (only by luck)



HIDDEN MARKOV MODEL (HMM)

Same example: 

But you don’t observe location
(dark room)

You hear how close the bot is!

S1 S2 S3

X1 X2 X3

Xt’s are loudness of what you hear



HIDDEN MARKOV MODEL (HMM)

• Both during the initial training/estimation phase, 
you never see the bot you only hear it

• But you hear it at any point in time

• We will come back to learning next class.

• What is probability that bot will be in state k at time 
t given the entire sequence of observations?

P (St = k|X1, . . . , XN )?



INFERENCE IN HMM

P (St = k|X1, . . . , XN )

/ P (Xt+1, . . . , XN |St = k,X1, . . . , Xt)P (St = k|X1, . . . , Xt)

/ P (Xt+1, . . . , XN |St = k,X1, . . . , Xt)P (St = k,X1, . . . , Xt)

/ P (Xt+1, . . . , XN |St = k,X1, . . . , Xt)P (Xt|St = k,X1, . . . , Xt�1)P (St = k,X1, . . . , Xt�1)

= P (Xt+1, . . . , XN |St = k)P (Xt|St = k)P (St = k,X1, . . . , Xt�1)

We know P (Xt|St = k)’s and P (St|St�1)

Compute P (Xt+1, . . . , XN ) and P (St = k,X1, . . . , Xt�1) recursively.



Real World Applications
▪ Speech recognition HMMs: 
▪Observations are wave forms (continuous valued) 
▪States are specific positions in specific words (so, tens 

of thousands) 

▪ Robot tracking: 
▪Observations are range readings (continuous) 
▪States are positions on a map (continuous) 

▪Machine translation HMMs: 
▪Observations are words (tens of thousands) 
▪States are translation options


