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RELATIONSHIP BETWEEN VARIABLES

Let X = (X1, . . . ,XN) be the random variables of our model (both latent
and observed)

Joint probability distribution over variable can be complex esp. if
we have many complexly related variables

Can we represent relation between variables in conceptually
simpler fashion?

We often have prior knowledge about the dependencies (or
conditional (in)dependencies) between variables



GRAPHICAL MODELS

A graph whose nodes are variables X1, . . . ,XN

Graphs are an intuitive way of representing relationships between
large number of variables

Allows us to abstract out the parametric form that depends on ✓
and the basic relationship between the random variables.

Draw a picture for the generative story  
that explains what generates what.



CONDITIONAL AND MARGINAL INDEPENDENCE

Conditional independence
Xi is conditionally independent of Xj given A ⊂ {X1, . . . ,XN}:

Xi ⊥ Xj�A⇔ P✓(Xi,Xj�A) = P✓(Xi�A) × P✓(Xj�A)⇔ P✓(Xi�Xj,A) = P✓(Xi�A)

Marginal independence:

Xi ⊥ Xj��⇔ P✓(Xi,Xj) = P✓(Xi)P✓(Xj)



EXAMPLE: CI AND MI



EXAMPLE: CI AND MIGRAPHICAL MODELS

A graph whose nodes are variables X1, . . . ,XN

Graphs are an intuitive way of representing relationships between
large number of variables

Allows us to abstract out the parametric form that depends on ✓
and the basic relationship between the random variables.

• Variables     is written as            if      is observed 

• Variables     is written as             if      is latent 

• Parameters are often left out (its understood and not 
explicitly written out). If present they dont have 
bounding objects 

• An directed edge        is drawn connecting every 
parent to its child (from parent to child) 
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BAYESIAN NETWORKS

Directed acyclic graph (DAG): G = (V,E)
Joint distribution P✓ over X1, . . . ,Xn that factorizes over G:

P✓(X1, . . . ,Xn) = N�
i=1

P✓(Xi�Parent(Xi))

Hence Bayesian Networks are specified by G along with CPD’s
over the variables (given their parents)



• Provide directed acyclic graph  

• why DAG? 

• Provide conditional probability or density of 
variable given its parents 

• At a high level variables can be discrete (like 
cluster assignments) or continuous like points in d-
dimensional space
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EXAMPLE: SUM OF COIN FLIPS
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EXAMPLE: NAIVE BAYES CLASSIFIER
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Eg. Spam classification



EXAMPLE: MIXTURE MODELS
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EXAMPLE: LATENT DIRICHLET ALLOCATION
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Eg. Topic modelling



EXAMPLE: HIDDEN MARKOV MODEL

S1 S2 S3

X1 X2 X3

Eg. Speech recognition



REPRESENTATIONAL POWER

Not all joint distributions can be represented by Bayesian
Networks
Eg. X1 ⊥ X4 � X3,X2 and X3 ⊥ X2 � X1,X4
This dependence can never be captured by a bayesian network,
Why?

Which distributions can be represented by Bayesian networks?



LOCAL MARKOV PROPERTY

Each variable is conditionally independent of its non-descendants
given its parents

Any joint distribution satisfying the local markov property w.r.t.
graph factorizes over the graph

Why?



FACTORIZING JOINT PROBABILITY

(DAG Factoids) Assume nodes are arranged according to some
topological sort
For any distribution we have:

P✓(X1, . . . ,XN) = N�
i=1

P✓(Xi�X1, . . . ,Xi−1)
. . .

For every directed edge from X to Y,

X comes before Y in the sorted order.



Two main questions
• Learning/estimation: Given observations, can we 

learn the parameters for the graphical model ?

• Inference: Given model parameters, can we 
answer queries about variables in the model

• Eg. what is the most likely value of a latent 
variable given observations

GRAPHICAL MODELS

A graph whose nodes are variables X1, . . . ,XN

Graphs are an intuitive way of representing relationships between
large number of variables

Allows us to abstract out the parametric form that depends on ✓
and the basic relationship between the random variables.



Two main questions
• Learning/estimation: Given observations, can we 

learn the parameters for the graphical model ?

• Inference: Given model parameters, can we 
answer queries about variables in the model

• Eg. what is the most likely value of a latent 
variable given observations

• Eg. What is the distribution of a particular 
variable conditioned on others 

GRAPHICAL MODELS

A graph whose nodes are variables X1, . . . ,XN

Graphs are an intuitive way of representing relationships between
large number of variables

Allows us to abstract out the parametric form that depends on ✓
and the basic relationship between the random variables.



INFERENCE IN GRAPHICAL MODELS

Given parameters of a graphical model, we can answer any questions
about distributions of variables in the model
Example queries:

1 What is the probability of a given assignment for a subset of
variables (marginal)?

2 What is the probability of a particular assignment of a subset of
variables given observed values (evidence) of some subset of the
variables (conditional)?

3 Given observed values (evidence) of some subset of variables
what is the most likely assignment for a given subset of variables?

Suffices to calculate marginals.

Why?



Bayes rule: for any two sets of variables A and B,

P (A|B) = P (A,B)/P (B)



Next class
• Start with example of Hidden Markov Model (HMM)

S1 S2 S3

X1 X2 X3


