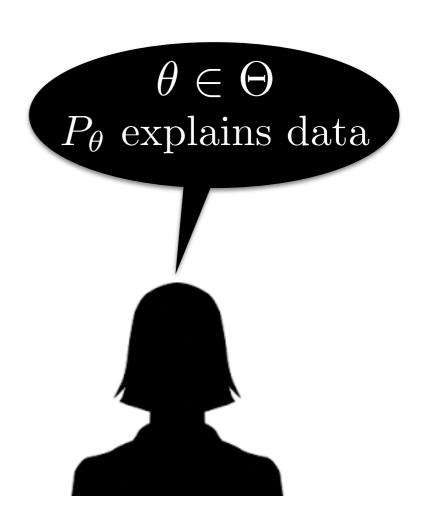
Machine Learning for Data Science (CS4786) Lecture 17

Graphical Models

Course Webpage:

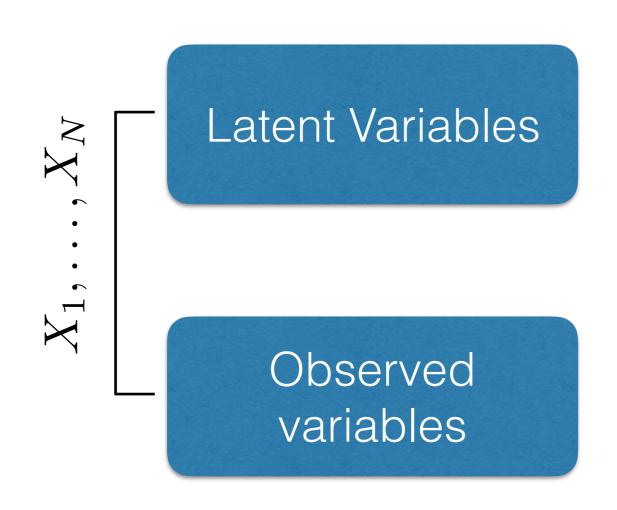
http://www.cs.cornell.edu/Courses/cs4786/2016fa/

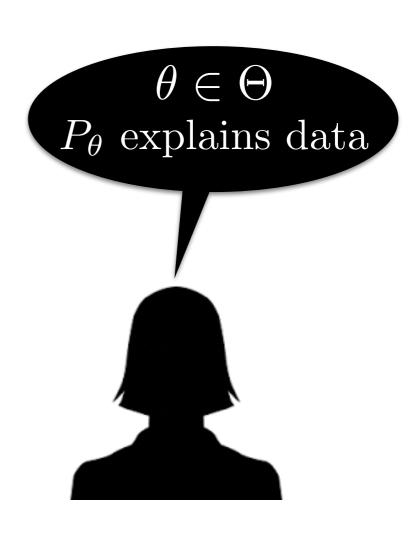
PROBABILISTIC MODEL



Data

PROBABILISTIC MODEL





RELATIONSHIP BETWEEN VARIABLES

Let $X = (X_1, ..., X_N)$ be the random variables of our model (both latent and observed)

- Joint probability distribution over variable can be complex esp. if we have many complexly related variables
- Can we represent relation between variables in conceptually simpler fashion?
- We often have prior knowledge about the dependencies (or conditional (in)dependencies) between variables

GRAPHICAL MODELS

- A graph whose nodes are variables X_1, \ldots, X_N
- Graphs are an intuitive way of representing relationships between large number of variables
- Allows us to abstract out the parametric form that depends on θ and the basic relationship between the random variables.

Draw a picture for the generative story that explains what generates what.

CONDITIONAL AND MARGINAL INDEPENDENCE

- Conditional independence
 - X_i is conditionally independent of X_j given $A \subset \{X_1, \ldots, X_N\}$:

$$X_{i} \perp X_{j}|A \Leftrightarrow P_{\theta}(X_{i}, X_{j}|A) = P_{\theta}(X_{i}|A) \times P_{\theta}(X_{j}|A)$$
$$\Leftrightarrow P_{\theta}(X_{i}|X_{j}, A) = P_{\theta}(X_{i}|A)$$

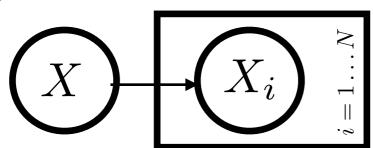
Marginal independence:

$$X_i \perp X_j | \varnothing \Leftrightarrow P_{\Theta}(X_i, X_j) = P_{\Theta}(X_i) P_{\Theta}(X_j)$$

EXAMPLE: CI AND MI

GRAPHICAL MODELS

- Variables X_i is written as (X_i) if X_i is observed
- Variables X_i is written as X_i if X_i is latent
- Parameters are often left out (its understood and not explicitly written out). If present they dont have bounding objects
- An directed edge → is drawn connecting every parent to its child (from parent to child)



 $X_1 \dots X_N$ drawn repeatedly from P(Y|X)

BAYESIAN NETWORKS

- Directed acyclic graph (DAG): G = (V, E)
- Joint distribution P_{θ} over X_1, \ldots, X_n that factorizes over G:

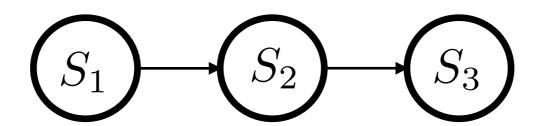
$$P_{\theta}(X_1,\ldots,X_n) = \prod_{i=1}^N P_{\theta}(X_i|\text{Parent}(X_i))$$

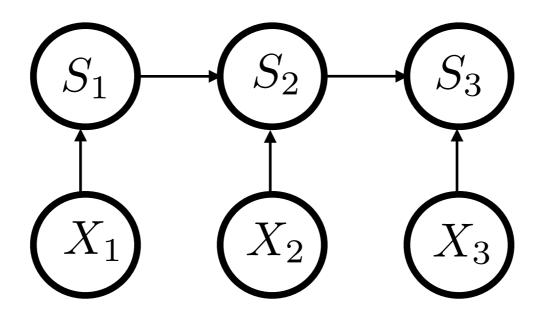
 Hence Bayesian Networks are specified by G along with CPD's over the variables (given their parents)

BAYESIAN NETWORKS

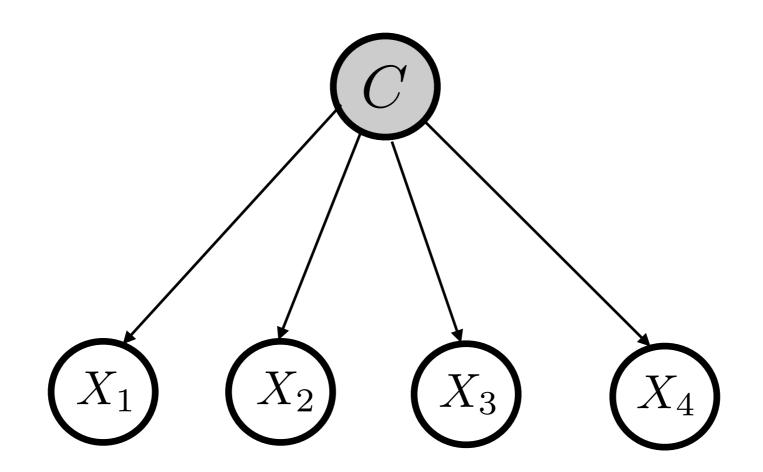
- Provide directed acyclic graph
 - why DAG?
- Provide conditional probability or density of variable given its parents
- At a high level variables can be discrete (like cluster assignments) or continuous like points in ddimensional space

EXAMPLE: SUM OF COIN FLIPS



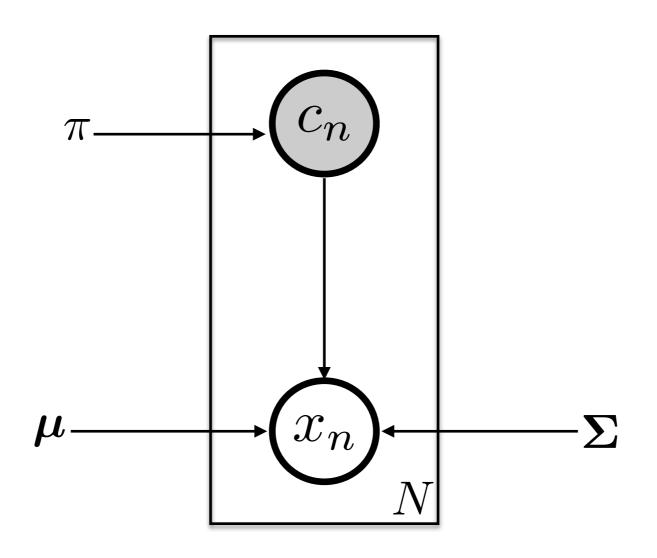


EXAMPLE: NAIVE BAYES CLASSIFIER



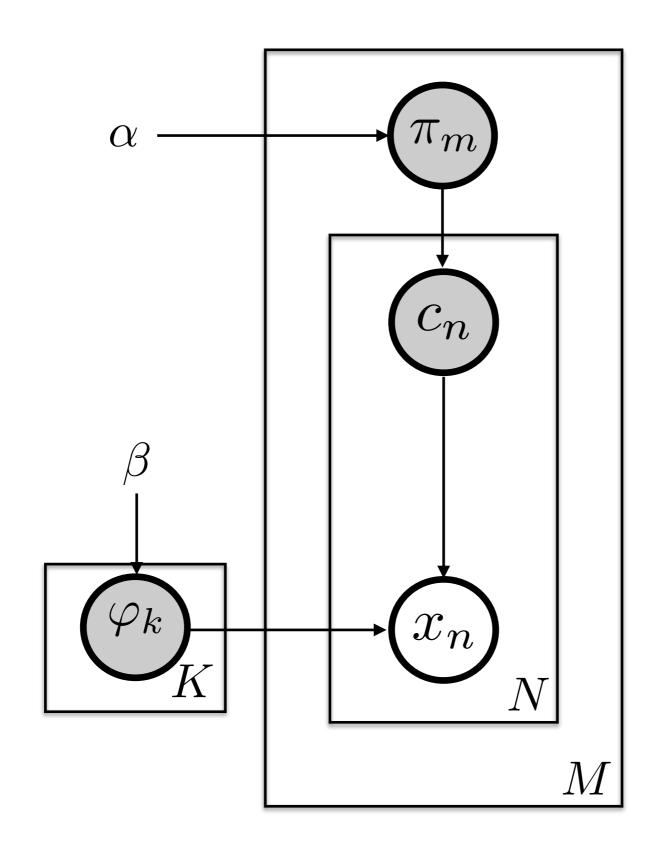
Eg. Spam classification

EXAMPLE: MIXTURE MODELS



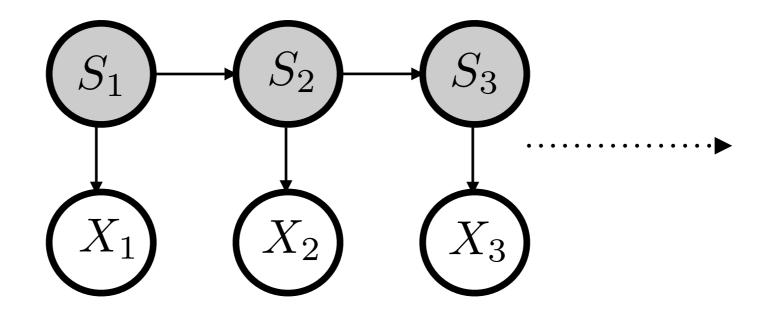
Eg. Clustering

EXAMPLE: LATENT DIRICHLET ALLOCATION



Eg. Topic modelling

EXAMPLE: HIDDEN MARKOV MODEL



Eg. Speech recognition

REPRESENTATIONAL POWER

- Not all joint distributions can be represented by Bayesian Networks
- Eg. $X_1 \perp X_4 \mid X_3, X_2$ and $X_3 \perp X_2 \mid X_1, X_4$ This dependence can never be captured by a bayesian network, Why?

Which distributions can be represented by Bayesian networks?

LOCAL MARKOV PROPERTY

- Each variable is conditionally independent of its non-descendants given its parents
- Any joint distribution satisfying the local markov property w.r.t. graph factorizes over the graph

Why?

FACTORIZING JOINT PROBABILITY

For every directed edge from X to Y, X comes before Y in the sorted order.

- (DAG Factoids) Assume nodes are arranged according to some topological sort
- For any distribution we have:

$$P_{\theta}(X_1,\ldots,X_N) = \prod_{i=1}^{N} P_{\theta}(X_i|X_1,\ldots,X_{i-1})$$

. . .

GRAPHICAL MODELS

Two main questions

- Learning/estimation: Given observations, can we learn the parameters for the graphical model?
- Inference: Given model parameters, can we answer queries about variables in the model
 - Eg. what is the most likely value of a latent variable given observations

GRAPHICAL MODELS

Two main questions

- Learning/estimation: Given observations, can we learn the parameters for the graphical model?
- Inference: Given model parameters, can we answer queries about variables in the model
 - Eg. what is the most likely value of a latent variable given observations
 - Eg. What is the distribution of a particular variable conditioned on others

INFERENCE IN GRAPHICAL MODELS

Given parameters of a graphical model, we can answer any questions about distributions of variables in the model Example queries:

- What is the probability of a given assignment for a subset of variables (marginal)?
- What is the probability of a particular assignment of a subset of variables given observed values (evidence) of some subset of the variables (conditional)?
- Given observed values (evidence) of some subset of variables what is the most likely assignment for a given subset of variables?

Suffices to calculate marginals.

Why?

Bayes rule: for any two sets of variables A and B, P(A|B) = P(A,B)/P(B)

Next class

Start with example of Hidden Markov Model (HMM)

