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PROBABILISTIC MODEL

Data: x1. . . . ,xn

✓ 2 ⇥
P✓ explains data
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PROBABILISTIC MODELS

Set of models ⇥ consists of parameters s.t. P✓ for each ✓ ∈ ⇥ is a
distribution over data.

Learning: Estimate ✓∗ ∈ ⇥ that best models given data



MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

✓
MLE

= argmax✓∈⇥ log P✓(x1, . . . ,xn
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Likelihood

A priori all models are equally good, data could have been
generated by any one of them



MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Maximize a posteriori probability of model given data
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EXPECTATION MAXIMIZATION ALGORITHM

Say c1, . . . , cn

are Latent variables. Eg. cluster assignments

Initialize ✓(0) arbitrarily, repeat unit convergence:

(E step) For every t, define distribution Q

t

over the latent variable c
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as:
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Mixture of Multinomials
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Multinomial Distribution

P (x|p) = m!

x[1]! · . . . · x[d]!p[1]
xt[1] · . . . · p[d]xt[d]

Probability of purchase vector x while drawing  
products independently m times from p



MIXTURE OF MULTINOMIALS

What is missing in this story?

Every customer could be a bit of every type, or at least a few types
Another example is modeling documents based on words
contained in them.
A document could belong to multiple topics (unline clustering)

10 10 5 2 50 0 00

1 0 0 1 100 0 10

0 0 0 0  01 1 00

10 5 5 2 51 1 11

20 15 10 5 00 0 00

Everyone is a bit of party and a bit of work!



LATENT DIRICHLET ALLOCATION

Generative story:
For t = 1 to n

For each customer draw mixture of types ⇡
t

∼ Dirchlet(↵)
For i = 1 to m

For each item to purchase, first draw type c

t

[i] ∼ ⇡
t

Next, given the type draw x

t

[i] ∼ p

c

t

[i]
End For

End For

Parameters, ↵ for the Dirichlet distribution and p1, . . . ,pK

the
distributions for each time over the d items.



DIRICHLET DISTRIBUTION

Its a distribution over distributions!
Parameters ↵1, . . . ,↵K

s.t. ↵
k

> 0
The density function is given as

p(⇡;↵) = 1
B(↵)

K�
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where B(↵) =∏K

k=1 �(↵k

)��(∑K

k=1 ↵k

)
K = 2 its called � distribution
For each document we draw ⇡ from a Dirchlet distribution (each
customer is a mixture of the various types)



DIRICHLET DISTRIBUTION
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WHAT IS THE DIRICHLET DISTRIBUTION DOING?

Say we didn’t have the Dir(↵), and we had one ⇡ for all
customers. Two choices:

1 For each customer t draw customer type c

t

from ⇡ and then draw
all products i from 1 to m, based on p

c

t

. What is this model?

2 For each customer t and each product i the customer buys, draw
c

t

[i] ∼ ⇡ and then draw x

t

[i] ∼ p

c

t

[i].



WHAT IS THE DIRICHLET DISTRIBUTION DOING?

Next, say we didn’t have Dir(↵) but each customer separate ⇡
t

?
This model is often called probabilistic latent semantic analysis
Number of parameters is n, grows with number of customers
Since each customer gets her/his own mixture distribution without
restriction, model can overfit easily.
Further, since there are as many ⇡’s as customers, when a new
customer walks in there is no way of extending ⇡

n+1 is any
meaningful way to use our model.

Dirichlet prior helps us get a model for new, unseen customers.
If we haven’t seen a customer type yet, thats ok.



A REFINED GENERATIVE STORY

Generative Story:
For each customer type k from 1 to K,

Draw p

k

∼ Dir(�) (smooth p

k

’s)

End
For each customer t from 1 to n

Draw ⇡
t

∼ Dir(↵)
For each purchase i from 1 to m for this customer,

Draw the customer type c

t

[i] ∼ ⇡
t

for the purchase
Given customer type, draw the item x

t

[i] ∼ p

c

t

[i] purchased
End

End
Parameters: ↵ a K-dimensional vector and � a d-dimensional vector.



EXPECTATION MAXIMIZATION ALGORITHM

Say c1, . . . , cn

are Latent variables. Eg. cluster assignments

Initialize ✓(0) arbitrarily, repeat unit convergence:

(E step) For every t, define distribution Q
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Latent variables ct[i]’s, pk’s and ⇡t’s.
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EM Algorithm for LDA
• There are infinite possibilities for       and

• Only think of           as latent variables 

• E-step becomes intractable!

• Use approximate E-step (Variational approximation)

• M-step involves convex optimization

⇡0
ts p0ks

ct[i]
0s



What was common between the various mixture 
models?



GRAPHICAL MODELS

Abstract away the parameterization specifics

Focus on relationship between random variables



GRAPHICAL MODELS

A graph whose nodes are variables X1, . . . ,XN

Graphs are an intuitive way of representing relationships between
large number of variables

Allows us to abstract out the parametric form that depends on ✓
and the basic relationship between the random variables.



GRAPHICAL MODELS

A graph whose nodes are variables X1, . . . ,XN

Graphs are an intuitive way of representing relationships between
large number of variables

Allows us to abstract out the parametric form that depends on ✓
and the basic relationship between the random variables.

Draw a picture for the generative story  
that explains what generates what.



GAUSSIAN MIXTURE MODEL
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MIXTURE OF MULTINOMIALS
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EXAMPLE: LATENT DIRICHLET ALLOCATION
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