Machine Learning for Data Science (CS4786)

Lecture 16

Latent Dirchlet Allocation

Course Webpage :
http://www.cs.cornell.edu/Courses/csd4786/2016fa/



PROBABILISTIC MODEL

0 cO

Py explains data

Data: x1....,X,



PROBABILISTIC MODEL

M3 — 0.25



PROBABILISTIC MODELS

@ Set of models O consists of parameters s.t. Pg for each 0 e © is a
distribution over data.

@ Learning: Estimate 0" € © that best models given data



MAXIMUM LIKELIHOOD PRINCIPAL

Pick 0 € © that maximizes probability of observation

OMLE = argmaxg o logPe(x1, ..., X1)
Likelihood

@ A priori all models are equally good, data could have been
generated by any one of them



MAXIMUM A POSTERIORI

Pick 0 € O that is most likely given data

Maximize a posteriori probability of model given data

Omap = argmaxy oP(0x1, .. ., X1)

= argmax, o logP(x1, ..., x,|0) +log P(0)



EXPECTATION MAXIMIZATION ALGORITHM

Say cq, ..., ¢, are Latent variables. Eg. cluster assignments

o Initialize 8(°) arbitrarily, repeat unit convergence:

(E step) For every ¢, define distribution Q; over the latent variable c; as:

Q" (cr) = P(cilxy, 007D

(M step)
01) = argmax, o > > QY (¢;)log P(xy, c1|0) if MLE
=1 Ct

00 = argmaxy. o 3 Y QY (¢;) log P(x;,¢|0)P(0)  if MAP

t=1 ¢
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Multinomial Distribution

Probability of purchase vector x while drawing
products independently m times from p



MIXTURE OF MULTINOMIALS

What is missing in this story?
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Everyone is a bit of party and a bit of work!



LATENT DIRICHLET ALLOCATION

@ Generative story:
Fort=1ton

For each customer draw mixture of types 7; ~ Dirchlet( )
Fori=1tom
For each item to purchase, first draw type c;[i]| ~ 7
Next, given the type draw x;[i] ~ p.,[i

End For
End For

@ Parameters, « for the Dirichlet distribution and py, .. ., px



DIRICHLET DISTRIBUTION

@ Its a distribution over distributions!
@ Parameters «q, ..., xg S.t. o >0
@ The density function is given as

1 K

p(7; o) = Wgﬂkk

where B(a) = TTi_; T'(ou) /T(Xheq o)



DIRICHLET DISTRIBUTION

Dlrlchlet( 5,.5,.5)

k N ETIATY IA

Dmchlet(l 1,1)

Dmchlet(S 10 8)

i“\ ne Lot lane [one Lo




WHAT IS THE DIRICHLET DISTRIBUTION DOING?

@ Say we didn’t have the Dir(«), and we had one 7 for all

customers.

@ For eac
all proc

@ For eac

Two choices:

n customer t draw customer type ¢; from 7t and then draw
ucts 7 from 1 to m, based on p.,. What is this model?

n customer f and each product i the customer buys, draw

ctl1] ~ mand then draw x;[i] ~ p.,i-



WHAT IS THE DIRICHLET DISTRIBUTION DOING?

@ Next, say we didn’t have Dir(«) but each customer separate 7t;?

o This model is often called probabilistic latent semantic analysis

o Number of parameters is 11, grows with number of customers

e Since each customer gets her/his own mixture distribution without
restriction, model can overtit easily.

o Further, since there are as many 7’s as customers, when a new
customer walks in there is no way of extending 7,1 is any
meaningful way to use our model.

Dirichlet prior helps us get a model for new, unseen customers.
If we haven’t seen a customer type yet, thats ok.



A REFINED GENERATIVE STORY

Generative Story:

For each customer type k from 1 to K,
Draw py ~ Dir(3) (smooth py’s)

End

For each customer t from 1 to n

Draw 7; ~ Dir( )
For each purchase i from 1 to m for this customer,

Draw the customer type c;[i]| ~ 7; for the purchase
Given customer type, draw the item x;[i| ~ p,,;] purchased

End
End

Parameters: o a K-dimensional vector and 3 a d-dimensional vector.



EXPECTATION MAXIMIZATION ALGORITHM

Say z1,..., 2, are Latent variables. Eg. cluster assighments

o Initialize 8(°) arbitrarily, repeat unit convergence:

(E step) For every ¢, define distribution Q; over the latent variable ¢; as:

Q" (%y) = P(zdx;, 007D)

(M step)

. n .
00 = argmax,. > > O (29 log P(x1,70) if MLE
t=1 <t

Latent variables c;|i]’s, pr’s and m;’s.



EM Algorithm for LDA

There are infinite possibilities for m;s and py.s

Only think of ¢:[i]’s as latent variables

E-step becomes intractable!

Use approximate E-step (Variational approximation)

M-step involves convex optimization



What was common between the various mixture
models?



GRAPHICAL MODELS

@ Abstract away the parameterization specifics

@ Focus on relationship between random variables



GRAPHICAL MODELS

@ A graph whose nodes are variables X1, ..., XN

@ Graphs are an intuitive way of representing relationships between
large number of variables

@ Allows us to abstract out the parametric form that depends on ©
and the basic relationship between the random variables.



GRAPHICAL MODELS

@ A graph whose nodes are variables X1, ..., XN

@ Graphs are an intuitive way of representing relationships between
large number of variables

@ Allows us to abstract out the parametric form that depends on ©
and the basic relationship between the random variables.

Draw a picture for the generative story
that explains what generates what.
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MIXTURE OF MULTINOMIALS
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EXAMPLE: LATENT DIRICHLET ALLOCATION




