Machine Learning for Data Science (CS4786)

Lecture 15

Probabilistic Modeling, Mixture of Multinomials

Course Webpage :
http://www.cs.cornell.edu/Courses/csd4786/2016fa/



Announcement

 For competition 1, in CMS also submit your code so
we can reproduce your kaggle predictions by
running it.



PROBABILISTIC MODEL

0 cO

Py explains data

Data: x1....,X,
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M3 — 0.25



PROBABILISTIC MODELS

@ Set of models O consists of parameters s.t. Pg for each 0 e © is a
distribution over data.

@ Learning: Estimate 0" € © that best models given data
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MAXIMUM LIKELIHOOD PRINCIPAL

Pick 0 € © that maximizes probability of observation

Reasoning:
@ One of the models in O is the correct one
@ Given data we pick the one that best explains the observed data

@ Equivalently pick the maximum likelihood estimator,

OpmLE = argmaxy g log Pe(x1, .. ., Xp)

Often referred to as frequentist view



MAXIMUM LIKELIHOOD PRINCIPAL

Pick 0 € © that maximizes probability of observation

OMLE = argmaxg o logPe(x1, ..., X1)
Likelihood

@ A priori all models are equally good, data could have been
generated by any one of them
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MAXIMUM A POSTERIORI

Say you had a prior belief about models provided by P(0)
Pick 0 € © that is most likely given data

Reasoning:
@ Models are abstractions that capture our belief
@ We update our belief based on observed data
@ Given data we pick the model that we believe the most

@ Pick 0 that maximizes log P(0|x, ..., X1,)

[ want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians
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MAXIMUM A POSTERIORI

Pick 0 € O that is most likely given data

Maximize a posteriori probability of model given data

Omap = argmaxy oP(0x1, .. ., X1)

P(x,. .., xn|0)P(0)

= argmax,_ g

= argmaxy. o P(x1,..., x,|0) P(0O)

likelgflood p;{or
= argmax, o logP(x1, ..., x,|0) +log P(0)



THE BAYESIAN CHOICE

Don’t pick any 0" € ©

@ Model is simply an abstraction

@ We have a prosteriori distribution over models, why pick one 97

P(X|data) = » P(X,6|data) = ) P(X|0)P(f|data)
0cO 0cO



EXPECTATION MAXIMIZATION ALGORITHM

Say cq, ..., ¢, are Latent variables. Eg. cluster assignments

o Initialize 8(°) arbitrarily, repeat unit convergence:

(E step) For every ¢, define distribution Q; over the latent variable c; as:

QY (¢r) = P(cilxr, 007D
x P(x¢|cy, H(i_l))P(ct\H(i_l))

(M step)

00 = argmaxgy. 3> QY (¢;)log P(x;, c/|0) if MLE
=1 c¢
1) = argmaxgeo Y | Y Q4 (cr)log P(xy,c|0) +log P()  if MAP

t=1 Ct:]_




Why EM works?

* Every iteration of EM only improves log-likelihood
(log a posteriori)
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MIXTURE OF MULTINOMIALS

@ Eg. Model purchases of each customer

@ K-types of customers, each designated with distribution over the d
items to buy

@ Generative model:
o 7 is mixture distribution over the K-types of buyers

® P1,..., pk are the K distributions over the d items, one for each
customer type

o Generative process, each round draw customer type ¢; ~ 7t

o Next given ¢; draw list of purchases as x; ~ multinomial(p,, )



Multinomial Distribution

Probability of purchase vector x while drawing
products independently m times from p



E-step

Q) (¢y) P<xt\ct, e“—”) (c]00D)




9(?)

= argmaxg Y S‘ Q

t=1 k=1

= argmax, , {
argmax, ., {
= argmax, , {

k) log (

VI-step

P(z¢|lc; = k,0)P(c; = k|O))




VI-step

(7) _ i Qti)(k)

-
& n

proportion of weights for each type

X wli)Q (k)
m Z?:1 QtZ) (k)

Pk |J)

weighted number of jth product
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Everyone is a bit of party and a bit of work!



LATENT DIRICHLET ALLOCATION

@ Generative story:
Fort=1ton

For each customer draw mixture of types
Fori=1tom
For each item to purchase, first draw type c;[i]| ~ 7
Next, given the type draw x;[i] ~ p.,[i

End For
End For



DIRICHLET DISTRIBUTION

@ Its a distribution over distributions!
@ Parameters «q, ..., xg S.t. o >0
@ The density function is given as

1 K

p(7; o) = Wgﬂkk

where B(a) = TTi_; T'(ou) /T(Xheq o)



DIRICHLET DISTRIBUTION

Dlrlchlet( 5,.5,.5)

k N ETIATY IA

Dmchlet(l 1,1)

Dmchlet(S 10 8)

i“\ ne Lot lane [one Lo




LATENT DIRICHLET ALLOCATION

@ Generative story:
Fort=1ton

For each customer draw mixture of types 7; ~ Dirchlet( )
Fori=1tom
For each item to purchase, first draw type c;[i]| ~ 7
Next, given the type draw x;[i] ~ p.,[i

End For
End For

@ Parameters, « for the Dirichlet distribution and py, ..., px the
distributions for each time over the d items.



