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Announcement

• For competition 1, in CMS also submit your code so 
we can reproduce your kaggle predictions by 
running it.



PROBABILISTIC MODEL

Data: x1. . . . ,xn

✓ 2 ⇥
P✓ explains data
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PROBABILISTIC MODELS

Set of models ⇥ consists of parameters s.t. P✓ for each ✓ ∈ ⇥ is a
distribution over data.

Learning: Estimate ✓∗ ∈ ⇥ that best models given data



MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

Reasoning:
One of the models in ⇥ is the correct one
Given data we pick the one that best explains the observed data
Equivalently pick the maximum likelihood estimator,

✓
MLE

= argmax✓∈⇥ log P✓(x1, . . . ,xn

)

Often referred to as frequentist view
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MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

✓
MLE

= argmax✓∈⇥ log P✓(x1, . . . ,xn

)�����������������������������������������������������������������������������������������������������
Likelihood

A priori all models are equally good, data could have been
generated by any one of them



MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data
Given data we pick the model that we believe the most
Pick ✓ that maximizes log P(✓�x1, . . . ,xn

)
I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)
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MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Maximize a posteriori probability of model given data

✓
MAP

= argmax✓∈⇥P(✓�x1, . . . ,xn
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THE BAYESIAN CHOICE

Don’t pick any ✓∗ ∈ ⇥
Model is simply an abstraction

We have a prosteriori distribution over models, why pick one if in
the end of the day we only want cluster assignments

For each point find probability of cluster assignment we get by
integrating over a posteriori probability of parameters ✓

We will come back to this later . . .

P (X|data) =
X

✓2⇥

P (X, ✓|data) =
X

✓2⇥

P (X|✓)P (✓|data)

✓?



EXPECTATION MAXIMIZATION ALGORITHM

Say c1, . . . , cn

are Latent variables. Eg. cluster assignments

Initialize ✓(0) arbitrarily, repeat unit convergence:

(E step) For every t, define distribution Q

t

over the latent variable c

t

as:

Q

(i)
t

(c
t

) = P(c
t

�x
t

,✓(i−1))
(M step)

✓(i) = argmax✓∈⇥
n�

t=1
�
c

t

Q

(i)
t

(c
t

) log P(x
t

, c
t

�✓) if MLE

✓(i) = argmax✓∈⇥
n�

t=1
�
c

t

Q

(i)
t

(c
t

) log P(x
t

, c
t

�✓)P(✓) if MAP

/ P (xt|ct, ✓(i�1))P (ct|✓(i�1))

✓

(i)
= argmax✓2⇥

nX

t=1

KX

ct=1

Q

(i)
t (ct) logP (xt, ct|✓) + logP (✓) if MAP



Why EM works?

• Every iteration of EM only improves log-likelihood 
(log a posteriori)



K buyer types 
Each type: distribution 

over products

Mixture of Multinomials
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MIXTURE OF MULTINOMIALS

Eg. Model purchases of each customer

K-types of customers, each designated with distribution over the d

items to buy

Generative model:
⇡ is mixture distribution over the K-types of buyers
p1, . . . ,pK

are the K distributions over the d items, one for each
customer type
Generative process, each round draw customer type c

t

∼ ⇡
Next given c

t

draw list of purchases as x

t

∼multinomial(p
c

t

)



Multinomial Distribution

P (x|p) = m!

x[1]! · . . . · x[d]!p[1]
xt[1] · . . . · p[d]xt[d]

Probability of purchase vector x while drawing  
products independently m times from p



E-step

Q

(i)
t

(c
t

) / P (x
t

|c
t

, ✓

(i�1))P (c
t

|✓(i�1))

=
P (x

t

|p(i�1)
ct )⇡(i�1)(c

t

)
P

K

k=1 P (x
t

|p(i�1)
k

)⇡(i�1)(k)

=
p

ct [1]
xt[1] · . . . · p

ct [d]
xt[d] · ⇡(i�1)

ctP
K

k=1 pk[1]
xt[1] · . . . · p

ct [d]
xt[d] · ⇡(i�1)

k



✓

(i)
= argmax

✓

nX

t=1

KX

k=1

Q

(i)
t

(k) log (P (x

t

|c
t

= k, ✓)P (c

t

= k|✓))
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⇡,p1,...,pK

(
nX

t=1

KX

k=1

Q

(i)
t

(k) log

✓
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x

t

[1]! · . . . · x
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⇣
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k

)

M-step



M-step

⇡(i)
k =

Pn
t=1 Q

(i)
t (k)

n

pk[j] =

Pn
t=1 xt[j]Q

(i)
t (k)

m

Pn
t=1 Q

(i)
t (k)

proportion of weights for each type

weighted number of jth product



MIXTURE OF MULTINOMIALS

What is missing in this story?

Every customer could be a bit of every type, or at least a few types
Another example is modeling documents based on words
contained in them.
A document could belong to multiple topics (unline clustering)



MIXTURE OF MULTINOMIALS

What is missing in this story?

Every customer could be a bit of every type, or at least a few types
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A document could belong to multiple topics (unline clustering)

10 10 5 2 50 0 00

1 0 0 1 100 0 10

0 0 0 0  01 1 00

10 5 5 2 51 1 11

20 15 10 5 00 0 00

Everyone is a bit of party and a bit of work!



LATENT DIRICHLET ALLOCATION

Generative story:
For t = 1 to n

For each customer draw mixture of types ⇡
t

∼ Dirchlet(↵)
For i = 1 to m

For each item to purchase, first draw type c

t

[i] ∼ ⇡
t

Next, given the type draw x

t

[i] ∼ p

c

t

[i]
End For

End For

Parameters, ↵ for the Dirichlet distribution and p1, . . . ,pK

the
distributions for each time over the d items.



DIRICHLET DISTRIBUTION

Its a distribution over distributions!
Parameters ↵1, . . . ,↵K

s.t. ↵
k

> 0
The density function is given as

p(⇡;↵) = 1
B(↵)

K�
k=1

⇡↵
k

k

where B(↵) =∏K

k=1 �(↵k

)��(∑K

k=1 ↵k

)
K = 2 its called � distribution
For each document we draw ⇡ from a Dirchlet distribution (each
customer is a mixture of the various types)
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