
Review Lecture 14



PRINCIPAL COMPONENT ANALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data × Top Keigenvectors

Reconstruction = Projection × Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.
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When to use PCA
• Great when data is truly low dimensional (on a 

hyperplane (linear)) 

• Or approximately low dimensional (almost lie on 
plane Eg. very flat ellipsoid) 

• Eg. Dimensionality reduction for face images, for 
multiple biometric applications as 
preprocessing…



• Warning: Scale matters (if some feature in in 
centimeters and others is meters, PCA direction 
can change) 

• Problem 1 of Homework 1

When to use PCA



Problem 1 of Homework 1

• Part 1: draw points on a 45 degree angle line 

• Eg. all coordinates are identical and values 
drawn for uniform distribution 

• Part 2: (Scale matters)  

• Say first coordinate had a variance many 
magnitudes larger than other coordinates.  

• The coordinates are all independently drawn



• Warning: direction of importance need not always 
be the one with good enough spread 

• Problem 2 of Homework 1

When to use PCA



CCA ALGORITHM

Write x̃t = � xt
x

′
t
� the d + d ′ dimensional concatenated vectors.

Calculate covariance matrix of the joint data points
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When to use CCA?

• CCA applies for problems where data can be split 
into 2 views X = [X1,X2] 

• CCA picks directions of projection (in each view) 
where data is maximally correlated 

• Maximizes correlation coefficient and not just 
covariance so is scale free 



When to use CCA
• Scenario 1: You have two feature extraction techniques.  

• One provides excellent features for dogs Vs cats and 
noise on other classes 

• Other method provides excellent features for cars Vs 
bikes and noise for other classes 

• What do we do? 

A. Use CCA to find one common representation 

B. Concatenate the two features extracted



When to use CCA
• Scenario 2: You have two cameras capturing images of the 

same objects from different angles.  

• You have  a feature extraction technique that provides feature 
vectors from each camera.  

• You want to extract good features for recognizing the object 
from the two cameras 

• What do we do? 

A. Use CCA to find one common representation 

B. Concatenate features provides excellent features for
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When to use RP?
• When data is huge and very large dimensional  

• For PCA, CCA typically you think of K (no. of dimensions 
we reduce to) in double digits 

• For RP think of K typically in 3-4 digit numbers 

• RP guarantees preservation of inter-point distances. 

• RP unlike PCA and CCA does not project using unit 
vectors. (What does this mean?) 

• Problem 1 of Homework 2



How do we choose K?

• For PCA? 

• For CCA? 

• For Random Projection?



KERNEL PCA
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KERNEL PCA

4. Y = ⇥K̃ P



When to use Kernel PCA

• When data lies on some non-linear, low dimensional 
subspace 

• Kernel function matters.  (Eg. RBF kernel, only 
points close to a given point have non-negligible 
kernel evaluation)



Clustering
CLUSTERING
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K-means

• K-means algorithm: (wishful thinking, EM)  

• Fix parameters (the k means) and compute new 
cluster assignments (or probabilities) for every 
point 

• Fix cluster assignment for all data points and re-
evaluate parameters (the k-means)



Single-Link Clustering

• Start with all points being their own clusters 

• Until we get K-clusters, merge the closest two 
clusters



When to Use Single Link

• When we have dense sampling of points within 
each cluster 

• When not to use: when we might have outliers 



When to use K-means

• When we have nice spherical round equal size 
clusters or cluster masses are far apart 

• Handles outliers better



Homework 3



Spectral Clustering

• You want to cluster nodes of a graph into groups 
based on connectivity 

• Unnormalized spectral clustering: divide into 
groups where as few edges between groups are 
cut



SPECTRAL CLUSTERING ALGORITHM
(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn



Spectral Embedding
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Normalized Spectral 
Clustering

• Unnormalized spectral embedding encourages loner 
nodes to be pushed far away from rest 

• This is indeed the minute solution to cut off loners 

• Instead form clusters that minimize ratio of edges cut 
to number of edges each cluster has  

• (busy groups tend to form clusters) 

• Algorithm, replace Laplacian matrix by normalized one



SPECTRAL CLUSTERING ALGORITHM (NORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the normalized Laplacian matrix L̃ = I −D
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3 Find eigen vectors v1, . . . ,vn

of L̃ (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn



When to use Spectral 
Clustering

• First, even works with weighted graph, where 
weight of edge represents similarity 

• When knowledge about how clusters should be 
formed is solely decided by similarity between 
points, there is no underlying prior knowledge 



PROBABILISTIC MODELS

More generally:
⇥ consists of set of possible parameters

We have a distribution P✓ over the data induced by each ✓ ∈ ⇥
Data is generated by one of the ✓ ∈ ⇥
Learning: Estimate value or distribution for ✓∗ ∈ ⇥ given data



EXAMPLES

Gaussian Mixture Model
Each ✓ consists of mixture distribution ⇡ = (⇡1, . . . ,⇡K

), means
µ1, . . . ,µK

∈ Rd and covariance matrices ⌃1, . . . ,⌃K

At time t we generate a new tree as follows:
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⇡1 = 0.5

⇡2 = 0.25

⇡3 = 0.25

Each ✓ 2 ⇥ is a model.

Gaussian Mixture Models

For each t, independently:



MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

✓
MLE

= argmax✓∈⇥ log P✓(x1, . . . ,xn
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Likelihood
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GMM: POWER OF WISHFUL THINKING

1 Initialize model parameters ⇡(0), µ(0)1 , . . . ,µ(0)
K

and ⌃
(0)
1 , . . . ,⌃(0)

K

2 For i = 1 until convergence or bored
1 Under current model parameters ✓(i−1), compute probability

Q

(i)
t

(k) of each point x

t

belonging to cluster k

2 Given probabilities of each point belonging to the various clusters,
compute optimal parameters ✓(i)

3 End For



MIXTURE MODELS

⇡ is mixture distribution over the K-types
�1, . . . ,�K

are parameters for K distributions
Generative process:

Draw type c
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Next given c
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, draw x
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c

t

)



EM ALGORITHM FOR MIXTURE MODELS

For i = 1 to convergence
(E step) For every t, define distribution Q

t

over the latent variable c

t

as:
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