Review Lecture 14



PRINCIPAL COMPONENT ANALYSIS




When to use PCA

* (Great when data is truly low dimensional (on a
hyperplane (linear))

* Or approximately low dimensional (almost lie on
plane Eg. very flat ellipsoid)

* Eg. Dimensionality reduction for face images, for
multiple biometric applications as
preprocessing...



When to use PCA

 Warning: Scale matters (if some feature in in

centimeters and others is meters, PCA direction
can change)

e Problem 1 of Homework 1



Problem 1 of Homework 1

* Part 1. draw points on a 45 degree angle line

* Eg. all coordinates are identical and values
drawn for uniform distribution

* Part 2: (Scale matters)

e Say first coordinate had a variance many
magnitudes larger than other coordinates.

* [he coordinates are all independently drawn



When to use PCA

* Warning: direction of importance need not always
be the one with good enough spread

e Problem 2 of Homework 1



CCA ALGORITHM
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When to use CCA?

 CCA applies for problems where data can be split
into 2 views X = [X1,X2]

 CCA picks directions of projection (in each view)
where data is maximally correlated

 Maximizes correlation coefficient and not just
covariance so is scale free



When to use CCA

e Scenario 1: You have two feature extraction techniques.

* One provides excellent features for dogs Vs cats and
noise on other classes

* Other method provides excellent features for cars Vs
bikes and noise for other classes

 What do we do?
A. Use CCA to find one common representation

B. Concatenate the two features extracted



When to use CCA

Scenario 2: You have two cameras capturing images of the
same objects from different angles.

You have a feature extraction technigue that provides feature
vectors from each camera.

You want to extract good features for recognizing the object
from the two cameras

What do we do?
A. Use CCA to find one common representation

B. Concatenate features provides excellent teatures for
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When to use RP?

When data is huge and very large dimensional

For PCA, CCA typically you think of K (no. of dimensions
we reduce to) in double digits

For RP think of K typically in 3-4 digit numbers
RP guarantees preservation of inter-point distances.

 RP unlike PCA and CCA does not project using unit
vectors. (What does this mean?)

e Problem 1 of Homework 2



How do we choose K7

« For PCA?

e For CCA?

 For Random Projection?



KERNEL PCA
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When to use Kernel PCA

e \When data lies on some non-linear, low dimensional
subspace

e Kernel function matters. (Eg. RBF kernel, only

points close to a given point have non-negligible
kernel evaluation)



CLUSTERING
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K-means

* K-means algorithm: (wishtul thinking, EM)

* Fix parameters (the k means) and compute new
cluster assignments (or probabilities) for every
point

* Fix cluster assignment for all data points and re-
evaluate parameters (the k-means)



Single-Link Clustering

e Start with all points being their own clusters

* Until we get K-clusters, merge the closest two
clusters



When to Use Single Link

* When we have dense sampling of points within
each cluster

* \When not to use: when we might have outliers



When to use K-means

* \WWhen we have nice spherical round equal size
clusters or cluster masses are far apart

e Handles outliers better



Homework 3



Spectral Clustering

* You want to cluster nodes of a graph into groups
based on connectivity

 Unnormalized spectral clustering: divide into
groups where as tew edges between groups are

cut



SPECTRAL CLUSTERING ALGORITHM

(UNNORMALIZED)

@ Given matrix A calculate diagonal matrix D s.t. D; ; = 2;7:1 Ajj

@ C(alculate the Laplacian matrix L=D - A
@ Find eigen vectors vy, .. ., v,, of L (ascending order of eigenvalues)

© Pick the K eigenvectors with smallest eigenvalues to get
K
Yi,-.-, Yn e R

@ Use K-means clustering algorithm on yq, . . ., Vn



Spectral Embedding
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Normalized Spectral
Clustering

Unnormalized spectral embedding encourages loner
nodes to be pushed far away from rest

This Is Indeed the minute solution to cut off loners

Instead form clusters that minimize ratio of edges cut
to number of edges each cluster has

* (busy groups tend to form clusters)

Algorithm, replace Laplacian matrix by normalized one



SPECTRAL CLUSTERING ALGORITHM (NORMALIZED)

O Given matrix A calculate diagonal matrix D s.t. D;; = 371 A

@ Calculate the normalized Laplacian matrix L=I-D12AD1/2
@ Find eigen vectors vy, .. ., v, of L (ascending order of eigenvalues)

© Pick the K eigenvectors with smallest eigenvalues to get
K
Y1::--, Yn e R

@ Use K-means clustering algorithm onyy, . . ., Vi



When to use Spectral
Clustering

* First, even works with weighted graph, where
weight of edge represents similarity

* \When knowledge about how clusters should be
formed is solely decided by similarity between
points, there is no underlying prior knowledge




PROBABILISTIC MODELS

@ O consists of set of possible parameters
@ We have a distribution Py over the data induced by each 0 € ©
@ Data is generated by one of the 0 € ©

@ Learning: Estimate value or distribution for 6" € © given data



(Gaussian Mixture Models

Each 6 € © is a model.

@ Gaussian Mixture Model

e Each 0 consists of mixture distribution 7t = (714, . . ., Tl ), Means
wi, ..., ug € R? and covariance matrices X1, .. ., 2K

® For each t, independently:
ct~ 1, Xt ~N(U, Z¢,)

m = 0.5 $%
21 A 0.25

Vo @

o — 0.25




GMM: POWER OF WISHFUL THINKING

Q Initialize model parameters ) p%O), o u1(<0) and Z%O) . ZI(<0)
@ Fori =1 until convergence or bored

©® Under current model parameters 6¢~1, compute probability
Qt(z) (k) of each point x; belonging to cluster k

@ Given probabilities of each point belonging to the various clusters,
compute optimal parameters o)

© End For



MIXTURE MODELS

@ 7 is mixture distribution over the K-types

® v1,...,Yk are parameters for K distributions

@ Generative process:
o Draw typec; ~ 7

o Next given ¢;, draw x; ~ Distribtuion(y,)



EM ALGORITHM FOR MIXTURE MODELS

For 1 =1 to convergence
(E step) For every ¢, define distribution Q; over the latent variable c; as:

QW (¢;) o« PDE(xp; v ™) - D [gy]

(M step) Foreveryke{l,..., K}

. n O .
() _ i1 Q'K e

= argmin z”: Qi[k]log(PDF(xt;v))
n Y  t=1

@ X; observation, ¢; latent variable.



