Review Lecture 14

PRINCIPAL COMPONENT ANALYSIS

2.

1.

3.

When to use PCA

- Great when data is truly low dimensional (on a hyperplane (linear))
- Or **approximately** low dimensional (almost lie on plane Eg. very flat ellipsoid)
 - Eg. Dimensionality reduction for face images, for multiple biometric applications as preprocessing...

When to use PCA

- Warning: Scale matters (if some feature in in centimeters and others is meters, PCA direction can change)
 - Problem 1 of Homework 1

Problem 1 of Homework 1

- Part 1: draw points on a 45 degree angle line
 - Eg. all coordinates are identical and values drawn for uniform distribution
- Part 2: (Scale matters)
 - Say first coordinate had a variance many magnitudes larger than other coordinates.
 - The coordinates are all independently drawn

When to use PCA

- Warning: direction of importance need not always be the one with good enough spread
 - Problem 2 of Homework 1

CCA ALGORITHM

When to use CCA?

- CCA applies for problems where data can be split into 2 views X = [X1,X2]
- CCA picks directions of projection (in each view) where data is maximally correlated
- Maximizes correlation coefficient and not just covariance so is scale free

When to use CCA

- Scenario 1: You have two feature extraction techniques.
 - One provides excellent features for dogs Vs cats and noise on other classes
 - Other method provides excellent features for cars Vs bikes and noise for other classes
- What do we do?

A. Use CCA to find one common representation

B. Concatenate the two features extracted

When to use CCA

- Scenario 2: You have two cameras capturing images of the same objects from different angles.
- You have a feature extraction technique that provides feature vectors from each camera.
- You want to extract good features for recognizing the object from the two cameras
- What do we do?
 - A. Use CCA to find one common representation
 - B. Concatenate features provides excellent features for

PICK A RANDOM W

When to use RP?

- When data is huge and very large dimensional
- For PCA, CCA typically you think of K (no. of dimensions we reduce to) in double digits
- For RP think of K typically in 3-4 digit numbers
- RP guarantees preservation of inter-point distances.
 - RP unlike PCA and CCA does not project using unit vectors. (What does this mean?)
 - Problem 1 of Homework 2

How do we choose K?

- For PCA?
- For CCA?
- For Random Projection?

KERNEL PCA

KERNEL PCA

When to use Kernel PCA

- When data lies on some non-linear, low dimensional subspace
- Kernel function matters. (Eg. RBF kernel, only points close to a given point have non-negligible kernel evaluation)

CLUSTERING

K-means

- K-means algorithm: (wishful thinking, EM)
 - Fix parameters (the k means) and compute new cluster assignments (or probabilities) for every point
 - Fix cluster assignment for all data points and reevaluate parameters (the k-means)

Single-Link Clustering

- Start with all points being their own clusters
- Until we get K-clusters, merge the closest two clusters

When to Use Single Link

- When we have dense sampling of points within each cluster
- When not to use: when we might have outliers

When to use K-means

- When we have nice spherical round equal size clusters or cluster masses are far apart
- Handles outliers better

Homework 3

Spectral Clustering

- You want to cluster nodes of a graph into groups based on connectivity
- Unnormalized spectral clustering: divide into groups where as few edges between groups are cut

Spectral Clustering Algorithm (Unnormalized)

- Given matrix *A* calculate diagonal matrix *D* s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- ② Calculate the Laplacian matrix L = D A
- 3 Find eigen vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of *L* (ascending order of eigenvalues)
- ④ Pick the *K* eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \ldots, \mathbf{y}_n \in \mathbb{R}^K$
- **5** Use K-means clustering algorithm on y_1, \ldots, y_n

Spectral Embedding

Normalized Spectral Clustering

- Unnormalized spectral embedding encourages loner nodes to be pushed far away from rest
- This is indeed the minute solution to cut off loners
- Instead form clusters that minimize ratio of edges cut to number of edges each cluster has
 - (busy groups tend to form clusters)
- Algorithm, replace Laplacian matrix by normalized one

- ① Given matrix *A* calculate diagonal matrix *D* s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- ② Calculate the normalized Laplacian matrix $\tilde{L} = I D^{-1/2}AD^{-1/2}$
- 3 Find eigen vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of \tilde{L} (ascending order of eigenvalues)
- ④ Pick the *K* eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$
- Use K-means clustering algorithm on y_1, \ldots, y_n

When to use Spectral Clustering

- First, even works with weighted graph, where weight of edge represents similarity
- When knowledge about how clusters should be formed is solely decided by similarity between points, there is no underlying prior knowledge

PROBABILISTIC MODELS

- 🖯 consists of set of possible parameters
- We have a distribution P_{θ} over the data induced by each $\theta \in \Theta$
- Data is generated by one of the $\theta \in \Theta$
- Learning: Estimate value or distribution for $\theta^* \in \Theta$ given data

Gaussian Mixture Models

Each $\theta \in \Theta$ is a model.

- Gaussian Mixture Model
 - Each θ consists of mixture distribution $\pi = (\pi_1, \dots, \pi_K)$, means $\mu_1, \dots, \mu_K \in \mathbb{R}^d$ and covariance matrices $\Sigma_1, \dots, \Sigma_K$
 - For each t, independently:

GMM: POWER OF WISHFUL THINKING

- Initialize model parameters $\pi^{(0)}$, $\mu_1^{(0)}$, ..., $\mu_K^{(0)}$ and $\Sigma_1^{(0)}$, ..., $\Sigma_K^{(0)}$
- For i = 1 until convergence or bored
 - Under current model parameters $\theta^{(i-1)}$, compute probability $Q_t^{(i)}(k)$ of each point \mathbf{x}_t belonging to cluster k
 - 2 Given probabilities of each point belonging to the various clusters, compute optimal parameters $\theta^{(i)}$
- 3 End For

MIXTURE MODELS

- π is mixture distribution over the *K*-types
- $\gamma_1, \ldots, \gamma_K$ are parameters for *K* distributions
- Generative process:
 - Draw type $c_t \sim \pi$
 - Next given c_t , draw $x_t \sim \text{Distribtuion}(\gamma_{c_t})$

EM ALGORITHM FOR MIXTURE MODELS

For i = 1 to convergence

(E step) For every *t*, define distribution Q_t over the latent variable c_t as:

 $Q_t^{(i)}(c_t) \propto \text{PDF}(x_t; \gamma_{c_t}^{(i-1)}) \cdot \pi^{(i-1)}[c_t]$

(M step) For every $k \in \{1, \ldots, K\}$

$$\pi_k^{(i)} = \frac{\sum_{t=1}^n Q_t^{(i)}[k]}{n}, \quad \gamma_k^{(i)} = \underset{\gamma}{\operatorname{argmin}} \sum_{t=1}^n Q_t[k] \log(\operatorname{PDF}(x_t;\gamma))$$

• *x_t* observation, *c_t* latent variable.