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PROBABILISTIC MODELS

More generally:
⇥ consists of set of possible parameters

We have a distribution P✓ over the data induced by each ✓ ∈ ⇥
Data is generated by one of the ✓ ∈ ⇥
Learning: Estimate value or distribution for ✓∗ ∈ ⇥ given data



MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

✓
MLE

= argmax✓∈⇥ log P✓(x1, . . . ,xn
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Multivariate Gaussian
• Two parameters: 

• Mean  

• Covariance matrix     of size dxd
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EXAMPLES

Gaussian Mixture Model
Each ✓ consists of mixture distribution ⇡ = (⇡1, . . . ,⇡K

), means
µ1, . . . ,µK

∈ Rd and covariance matrices ⌃1, . . . ,⌃K

At time t we generate a new tree as follows:

c

t
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µ3
⌃ 3
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⇡1 = 0.5

⇡2 = 0.25

⇡3 = 0.25

Each ✓ 2 ⇥ is a model.

Gaussian Mixture Models

For each t, independently:



TOWARDS EM ALGORITHM

Latent variables can help, but we have a chicken and egg problem

Given all variables including latent variables, finding optimal
parameters is easy

Given model parameter, optimizing/finding distribution over the
latent variables is easy



EM ALGORITHM FOR GMM

1 Initialize model parameters ⇡(0), µ(0)1 , . . . ,µ(0)
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(weighted centroid) (weighted covariance)



Demo



WHY SHOULD EM WORK?

A very high level view:
Performing E-step will never decrease log-likelihood (or log a
posteriori)

Performing M-step will never decrease log-likelihood (or log a
posteriori)



WHY SHOULD EM WORK?

Likelihood never decreases

So whenever we converge we converge to a local optima

However problem is non-convex and can have many local optimal

In general no guarantee on rate of convergence

In practice, do multiple random initializations and pick the best
one!



WHY SHOULD EM WORK?

Steps to show that log Lik(✓(i)) ≥ log Lik(✓(i−1)) :

log P✓(i)(x1, . . . ,xn
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EM IN GENERAL

There was nothing special about GMM or clustering problems

EM can be used as a general strategy for any problem with
latent/missing/unobserved variables

The MAP version only involves an extra prior term over ✓
multiplied to the likelihood

In general probabilistic models with observed and latent variables
can be represented succinctly as graphical models.
Next time . . .

MIXTURE OF MULTINOMIALS

Eg. Model purchases of each customer

K-types of customers, each designated with distribution over the d

items to buy

Generative model:
⇡ is mixture distribution over the K-types of buyers
p1, . . . ,pK

are the K distributions over the d items, one for each
customer type
Generative process, each round draw customer type c

t

∼ ⇡
Next given c

t

draw list of purchases as x

t

∼multinomial(p
c

t

)

(xt = one of the d items bought)



EM ALGORITHM FOR MIXTURE OF MULTINOMIALS

1 Initialize model parameters ⇡(0) and p
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1
Q

(i)
t

(k)∝ p

(i−1)
k

[x
t

] ⋅ ⇡(i−1)
k

2 For every k ∈ [K],
p

(i)
k

[j] = ∑n

t=1 Q

(i)
t

(k)1{x
t

= j}
∑n

t=1 Q

t

(k) , ⇡
(i)
k

= ∑n

t=1 Q

(i)
t

(k)
n

3 End For



MIXTURE MODELS

⇡ is mixture distribution over the K-types
�1, . . . ,�K

are parameters for K distributions
Generative process:

Draw type c

t

∼ ⇡
Next given c

t

, draw x

t

∼ Distribtuion(�
c

t

)



EM ALGORITHM FOR MIXTURE MODELS

For i = 1 to convergence
(E step) For every t, define distribution Q

t

over the latent variable c

t

as:

Q

(i)
t

(c
t

)∝ PDF(x
t

;�(i−1)
c

t

) ⋅ ⇡(i−1)[c
t

]
(M step) For every k ∈ {1, . . . ,K}

⇡
(i)
k

= ∑n

t=1 Q

(i)
t

[k]
n

, �
(i)
k

= argmin
�

n�
t=1

Q

t

[k] log(PDF(x
t

;�))

x

t

observation, c

t

latent variable.


