## Machine Learning for Data Science (CS4786) Lecture 13

Mixture Models

Course Webpage :

http://www.cs.cornell.edu/Courses/cs4786/2016fa/

## PROBABILISTIC MODELS

- 🖯 consists of set of possible parameters
- We have a distribution  $P_{\theta}$  over the data induced by each  $\theta \in \Theta$
- Data is generated by one of the  $\theta \in \Theta$
- Learning: Estimate value or distribution for  $\theta^* \in \Theta$  given data

## MAXIMUM LIKELIHOOD PRINCIPAL

#### Pick $\theta \in \Theta$ that maximizes probability of observation

$$\theta_{MLE} = \operatorname{argmax}_{\theta \in \Theta} \log P_{\theta}(x_1, \dots, x_n)$$
  
 $\mathbf{I} : \mathbf{I} = \mathbf{I} : \mathbf{I} = \mathbf{I}$ 

Likelihood

# Multivariate Gaussian

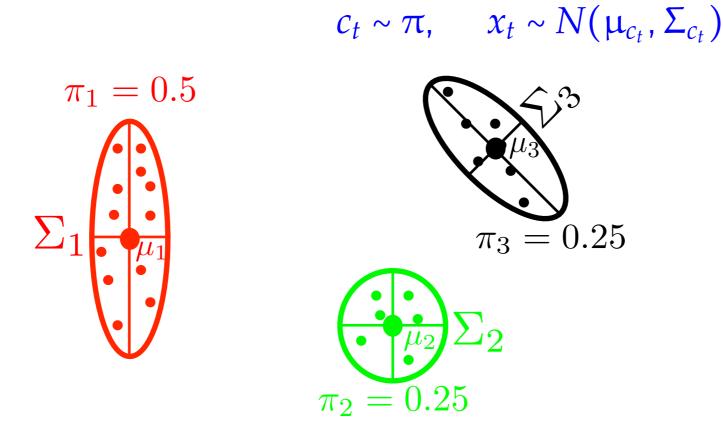
- Two parameters:
  - Mean  $\mu \in \mathbb{R}^d$
  - Covariance matrix  $\Sigma$  of size dxd

 $p(x;\mu,\Sigma) = (2\pi)^{-d/2} \det(\Sigma)^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)^{\top}\Sigma(x-\mu)\right)$ 

## Gaussian Mixture Models

#### Each $\theta \in \Theta$ is a model.

- Gaussian Mixture Model
  - Each  $\theta$  consists of mixture distribution  $\pi = (\pi_1, \dots, \pi_K)$ , means  $\mu_1, \dots, \mu_K \in \mathbb{R}^d$  and covariance matrices  $\Sigma_1, \dots, \Sigma_K$
  - For each t, independently:



## TOWARDS EM ALGORITHM

• Latent variables can help, but we have a chicken and egg problem

## Given all variables including latent variables, finding optimal parameters is easy

Given model parameter, optimizing/finding distribution over the latent variables is easy

## EM ALGORITHM FOR GMM

- Initialize model parameters  $\pi^{(0)}$ ,  $\mu_1^{(0)}$ , ...,  $\mu_K^{(0)}$  and  $\Sigma_1^{(0)}$ , ...,  $\Sigma_K^{(0)}$
- For i = 1 until convergence or bored
  - **1**  $Q_t^{(i)}(k) \propto p(\mathbf{x}_t; \mu_k^{(i-1)}, \Sigma_k^{(i-1)}) \cdot \pi_k^{(i-1)}$
  - ② For every  $k \in [K]$ ,

$$\mu_{k}^{(i)} = \frac{\sum_{t=1}^{n} Q_{t}^{(i)}(k) x_{t}}{\sum_{t=1}^{n} Q_{t}(k)}, \quad \Sigma_{k}^{(i)} = \frac{\sum_{t=1}^{n} Q_{t}^{(i)}(k) \left(x_{t} - \mu_{k}^{(i)}\right) \left(x_{t} - \mu_{k}^{(i)}\right)^{\top}}{\sum_{t=1}^{n} Q_{t}(k)}$$
(weighted centroid) (weighted covariance)
$$\pi_{k}^{(i)} = \frac{\sum_{t=1}^{n} Q_{t}^{(i)}(k)}{n}$$



Demo

A very high level view:

- Performing E-step will never decrease log-likelihood (or log a posteriori)
- Performing M-step will never decrease log-likelihood (or log a posteriori)

- Likelihood never decreases
- So whenever we converge we converge to a local optima
- However problem is non-convex and can have many local optimal
- In general no guarantee on rate of convergence
- In practice, do multiple random initializations and pick the best one!

Steps to show that  $\log \text{Lik}(\theta^{(i)}) \ge \log \text{Lik}(\theta^{(i-1)})$ :

 $\log P_{\theta^{(i)}}(x_1,\ldots,x_n)$ 

Steps to show that  $\log \text{Lik}(\theta^{(i)}) \ge \log \text{Lik}(\theta^{(i-1)})$ :

$$\log P_{\theta^{(i)}}(x_1,\ldots,x_n) = \sum_{t=1}^n \log P_{\theta^{(i)}}(x_t)$$

$$\log P_{\theta^{(i)}}(x_1, \dots, x_n) = \sum_{t=1}^n \log P_{\theta^{(i)}}(x_t)$$
$$= \sum_{t=1}^n \log \left( \sum_{c_t=1}^K P_{\theta^{(i)}}(x_t, c_t) \right)$$

Steps to show that  $\log \text{Lik}(\theta^{(i)}) \ge \log \text{Lik}(\theta^{(i-1)})$ :

$$\log P_{\theta^{(i)}}(x_{1}, \dots, x_{n}) = \sum_{t=1}^{n} \log P_{\theta^{(i)}}(x_{t})$$
$$= \sum_{t=1}^{n} \log \left( \sum_{c_{t}=1}^{K} P_{\theta^{(i)}}(x_{t}, c_{t}) \right)$$
$$= \sum_{t=1}^{n} \log \left( \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \left( \frac{P_{\theta^{(i)}}(x_{t}, c_{t})}{Q^{(i)}(c_{t})} \right) \right)$$

Steps to show that  $\log \text{Lik}(\theta^{(i)}) \ge \log \text{Lik}(\theta^{(i-1)})$ :

$$\log P_{\theta^{(i)}}(x_{1}, \dots, x_{n}) = \sum_{t=1}^{n} \log P_{\theta^{(i)}}(x_{t})$$
$$= \sum_{t=1}^{n} \log \left( \sum_{c_{t}=1}^{K} P_{\theta^{(i)}}(x_{t}, c_{t}) \right)$$
$$= \sum_{t=1}^{n} \log \left( \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \left( \frac{P_{\theta^{(i)}}(x_{t}, c_{t})}{Q^{(i)}(c_{t})} \right) \right)$$
$$\geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \log \left( \frac{P_{\theta^{(i)}}(x_{t}, c_{t})}{Q^{(i)}(c_{t})} \right)$$

$$\log P_{\theta^{(i)}}(x_1, \dots, x_n) \ge \sum_{t=1}^n \sum_{c_t=1}^K Q^{(i)}(c_t) \log \left( \frac{P_{\theta^{(i)}}(x_t, c_t)}{Q^{(i)}(c_t)} \right)$$

$$\log P_{\theta^{(i)}}(x_{1}, \dots, x_{n}) \geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \log \left(\frac{P_{\theta^{(i)}}(x_{t}, c_{t})}{Q^{(i)}(c_{t})}\right)$$
$$\geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \log \left(\frac{P_{\theta^{(i-1)}}(x_{t}, c_{t})}{Q^{(i)}(c_{t})}\right)$$

$$\log P_{\theta^{(i)}}(x_{1}, \dots, x_{n}) \geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \log \left(\frac{P_{\theta^{(i)}}(x_{t}, c_{t})}{Q^{(i)}(c_{t})}\right)$$
$$\geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \log \left(\frac{P_{\theta^{(i-1)}}(x_{t}, c_{t})}{Q^{(i)}(c_{t})}\right)$$
$$= \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \log \left(\frac{P_{\theta^{(i-1)}}(x_{t}, c_{t})}{P_{\theta^{(i-1)}}(c_{t}|x_{t})}\right)$$

$$\log P_{\theta^{(i)}}(x_{1}, \dots, x_{n}) \geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \log \left(\frac{P_{\theta^{(i)}}(x_{t}, c_{t})}{Q^{(i)}(c_{t})}\right)$$
$$\geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \log \left(\frac{P_{\theta^{(i-1)}}(x_{t}, c_{t})}{Q^{(i)}(c_{t})}\right)$$
$$= \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \log \left(\frac{P_{\theta^{(i-1)}}(x_{t}, c_{t})}{P_{\theta^{(i-1)}}(c_{t}|x_{t})}\right)$$
$$= \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \log P_{\theta^{(i)}}(x_{t})$$

$$\begin{split} \log P_{\theta^{(i)}}(x_{1}, \dots, x_{n}) &\geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \log \left( \frac{P_{\theta^{(i)}}(x_{t}, c_{t})}{Q^{(i)}(c_{t})} \right) \\ &\geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \log \left( \frac{P_{\theta^{(i-1)}}(x_{t}, c_{t})}{Q^{(i)}(c_{t})} \right) \\ &= \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \log \left( \frac{P_{\theta^{(i-1)}}(x_{t}, c_{t})}{P_{\theta^{(i-1)}}(c_{t}|x_{t})} \right) \\ &= \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}(c_{t}) \log P_{\theta^{(i)}}(x_{t}) \\ &= \sum_{t=1}^{n} \log P_{\theta^{(i)}}(x_{t}) \end{split}$$

## MIXTURE OF MULTINOMIALS

- Eg. Model purchases of each customer ( $x_t$  = one of the d items bought)
- *K*-types of customers, each designated with distribution over the *d* items to buy
- Generative model:
  - $\pi$  is mixture distribution over the *K*-types of buyers
  - $p_1, \ldots, p_K$  are the *K* distributions over the *d* items, one for each customer type
  - Generative process, each round draw customer type  $c_t \sim \pi$
  - Next given  $c_t$  draw list of purchases as  $x_t \sim \text{multinomial}(p_{c_t})$

## EM Algorithm for Mixture of Multinomials

- Initialize model parameters  $\pi^{(0)}$  and  $p_1^{(0)}, \ldots, p_K^{(0)}$ .
- For i = 1 until convergence or bored
  - $Q_t^{(i)}(k) \propto p_k^{(i-1)}[x_t] \cdot \pi_k^{(i-1)}$
  - ② For every  $k \in [K]$ ,

$$p_k^{(i)}[j] = \frac{\sum_{t=1}^n Q_t^{(i)}(k) \mathbf{1} \{ x_t = j \}}{\sum_{t=1}^n Q_t(k)} , \quad \pi_k^{(i)} = \frac{\sum_{t=1}^n Q_t^{(i)}(k)}{n}$$



## MIXTURE MODELS

- $\pi$  is mixture distribution over the *K*-types
- $\gamma_1, \ldots, \gamma_K$  are parameters for *K* distributions
- Generative process:
  - Draw type  $c_t \sim \pi$
  - Next given  $c_t$ , draw  $x_t \sim \text{Distribtuion}(\gamma_{c_t})$

## EM ALGORITHM FOR MIXTURE MODELS

For i = 1 to convergence

(E step) For every *t*, define distribution  $Q_t$  over the latent variable  $c_t$  as:

 $Q_t^{(i)}(c_t) \propto \text{PDF}(x_t; \gamma_{c_t}^{(i-1)}) \cdot \pi^{(i-1)}[c_t]$ 

(M step) For every  $k \in \{1, \ldots, K\}$ 

$$\pi_k^{(i)} = \frac{\sum_{t=1}^n Q_t^{(i)}[k]}{n}, \quad \gamma_k^{(i)} = \underset{\gamma}{\operatorname{argmin}} \sum_{t=1}^n Q_t[k] \log(\operatorname{PDF}(x_t;\gamma))$$

• *x<sub>t</sub>* observation, *c<sub>t</sub>* latent variable.