Machine Learning for Data Science (CS4786) Lecture 12

Gaussian Mixture Models

Course Webpage:

http://www.cs.cornell.edu/Courses/cs4786/2016fa/

- Single link is sensitive to outliners
- We need a good clustering algorithm after spectral embedding: K-means?

- Looks for spherical clusters
- Of same size
- And with roughly equal number of points

 When averaged across all possible situations, all algorithms perform equally well/badly

 When averaged across all possible situations, all algorithms perform equally well/badly

No Assumptions => No method

 When averaged across all possible situations, all algorithms perform equally well/badly

No Assumptions => No method

Lets model our assumptions in a more principled way

How do we model the following?

Multivariate Gaussian

- Two parameters:
 - Mean $\mu \in \mathbb{R}^d$
 - Covariance matrix \sum of size dxd

Multivariate Gaussian

- Two parameters:
 - Mean $\mu \in \mathbb{R}^d$
 - Covariance matrix \sum of size dxd

$$p(x; \mu, \Sigma) = (2\pi)^{-d/2} \det(\Sigma)^{-1/2} \exp\left(-\frac{1}{2}(x - \mu)^{\top} \Sigma(x - \mu)\right)$$

Multivariate Gaussian

- Two parameters:
 - Mean $\mu \in \mathbb{R}^d$
 - Covariance matrix \sum of size dxd

$$p(x; \mu, \Sigma) = (2\pi)^{-d/2} \det(\Sigma)^{-1/2} \exp\left(-\frac{1}{2}(x - \mu)^{\top} \Sigma(x - \mu)\right)$$

Gaussian Mixture Models

Each $\theta \in \Theta$ is a model.

- Gaussian Mixture Model
 - Each θ consists of mixture distribution $\pi = (\pi_1, \dots, \pi_K)$, means $\mu_1, \dots, \mu_K \in \mathbb{R}^d$ and covariance matrices $\Sigma_1, \dots, \Sigma_K$
 - For each t, independently:

PROBABILISTIC MODELS

- consists of set of possible parameters
- We have a distribution P_{θ} over the data induced by each $\theta \in \Theta$
- Data is generated by one of the $\theta \in \Theta$
- Learning: Estimate value or distribution for $\theta^* \in \Theta$ given data

MAXIMUM LIKELIHOOD PRINCIPAL

Pick $\theta \in \Theta$ that maximizes probability of observation

$$\theta_{MLE} = \operatorname{argmax}_{\theta \in \Theta} \log P_{\theta}(x_1, \dots, x_n)$$
Likelihood

EXAMPLE: GAUSSIAN MIXTURE MODEL

MLE:
$$\theta = (\mu_1, \ldots, \mu_K), \pi, \Sigma$$

$$P_{\theta}(x_1, \dots, x_n) = \prod_{t=1}^{n} \left(\sum_{i=1}^{K} \pi_i \frac{1}{\sqrt{(2*3.1415)^2 |\Sigma_i|}} \exp\left(-(x_t - \mu_i)^{\top} \Sigma_i (x_t - \mu_i)\right) \right)$$

Find θ that maximizes $\log P_{\theta}(x_1, \ldots, x_n)$

MLE FOR GMM

Let us consider the one dimensional case, assume variances are 1 and π is uniform

$$\log P_{\theta}(x_{1,...,n}) = \sum_{t=1}^{n} \log \left(\frac{1}{K} \sum_{i=1}^{K} \frac{1}{\sqrt{2 * 3.1415}} \exp\left(-(x_{t} - \mu_{i})^{2} / 2\right) \right)$$

Now consider the partial derivative w.r.t. μ_1 , we have:

$$\frac{\partial \log P_{\theta}(x_{1,...,n})}{\partial \mu_{1}} = \sum_{t=1}^{n} \frac{-(x_{t} - \mu_{1}) \exp\left(-\frac{(x_{t} - \mu_{1})^{2}}{2}\right)}{\sum_{i=1}^{K} \exp\left(-\frac{(x_{t} - \mu_{i})^{2}}{2}\right)}$$

Given all other parameters, optimizing w.r.t. even just μ_1 is hard!

MLE FOR GMM

Say by some magic you knew cluster assignments, then

How would you compute parameters?

MLE FOR GMM

Say by some magic you knew cluster assignments, then

How would you compute parameters?

LATENT VARIABLES

- We only observe x_1, \ldots, x_n , cluster assignments c_1, \ldots, c_n are not observed
- Finding $\theta \in \Theta$ (even for 1-d GMM) that directly maximizes Likelihood or A Posteriori given x_1, \ldots, x_n is hard!
- Given latent variables c_1, \ldots, c_n , the problem of maximizing likelihood (or a posteriori) became easy

Can we use latent variables to device an algorithm?

TOWARDS EM ALGORITHM

• Latent variables can help, but we have a chicken and egg problem

Given all variables including latent variables, finding optimal parameters is easy

Given model parameter, optimizing/finding distribution over the latent variables is easy

GMM: POWER OF WISHFUL THINKING

- **1** Initialize model parameters $\pi^{(0)}$, $\mu_1^{(0)}$, ..., $\mu_K^{(0)}$ and $\Sigma_1^{(0)}$, ..., $\Sigma_K^{(0)}$
- 2 For i = 1 until convergence or bored
 - Under current model parameters $\theta^{(i-1)}$, compute probability $Q_t^{(i)}(k)$ of each point \mathbf{x}_t belonging to cluster k
 - ② Given probabilities of each point belonging to the various clusters, compute optimal parameters $\theta^{(i)}$
- End For

EM ALGORITHM FOR GMM

- **1** Initialize model parameters $\pi^{(0)}$, $\mu_1^{(0)}$, ..., $\mu_K^{(0)}$ and $\Sigma_1^{(0)}$, ..., $\Sigma_K^{(0)}$
- 2 For i = 1 until convergence or bored

1
$$Q_t^{(i)}(k) \propto p(\mathbf{x}_t; \mu_k^{(i-1)}, \Sigma_k^{(i-1)}) \cdot \pi_k^{(i-1)}$$

2 For every $k \in [K]$,

$$\mu_k^{(i)} = \frac{\sum_{t=1}^n Q_t^{(i)}(k) x_t}{\sum_{t=1}^n Q_t(k)}, \quad \Sigma_k^{(i)} = \frac{\sum_{t=1}^n Q_t^{(i)}(k) \left(x_t - \mu_k^{(i)}\right) \left(x_t - \mu_k^{(i)}\right)^{\top}}{\sum_{t=1}^n Q_t(k)}$$

$$\pi_k^{(i)} = \frac{\sum_{t=1}^n Q_t^{(i)}(k)}{n}$$

End For

Demo