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Competition I Out!
• Preliminary report of 1-2 pages due Oct 4th

• Form your groups 

• Download data and familiarize yourself 

• Jot down preliminary ideas  

• In 1/2 page mention each group members contribution 
so far 

• Competition closes Oct 27th



TELL ME WHO YOUR FRIENDS ARE . . .

Cluster nodes in a graph.
Analysis of social network data.

SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x
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Example: A

i,j = exp(−�d(x
i
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j

))
A is adjacency matrix of a graph
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SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph

Cut(c) ⇠ 1

2
c>Lc

Approximately minimize cut

Minimize c>Lc s.t. c ? 1



SPECTRAL CLUSTERING ALGORITHM
(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn

y1, . . . ,yn are called spectral embedding



What is the Embedding?

• Map each node in V to R   

• Nodes lightly connected are farther 

• Lets see some examples…

K
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More Examples



SPECTRAL CLUSTERING (UNNORMALIZED)

Min-cut on a graph can be efficiently computed

Why bother with the approximate algorithm

Is cut even a good measure?



RATIO CUT

Why cut is perhaps not a good measure?

Fixes? Perhaps Ratio Cut ∶ CUT(C1,C2)� 1�C1� + 1�C2��
Set c

i

=
�����������

� �C2��C1� if i ∈ C1

−� �C1��C2� otherwise

Verify that c

�
Lc = n ×Ratio Cut and �c�2 =√n (and c ⊥ 1)

Relaxed solution is same as Unnormalized Spectral clustering
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RATIO CUT

Why cut is perhaps not a good measure?

Fixes? Perhaps Ratio Cut ∶ CUT(C1,C2)� 1�C1� + 1�C2��
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NORMALIZED CUT

Normalized cut: Minimize sum of ratio of number of edges cut
per cluster and number of edges within cluster

NCUT =�
j

CUT(C
j

)
Edges(C

j

)
Example K = 2

CUT(C1,C2)� 1
Edges(C1) +

1
Edges(C2)�

This is an NP hard problem!

. . . so relax

Edges(Ci) = degree(Ci) =
X

t2Ci

Dt,t
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NORMALIZED CUT

First note that Edges(C
i

) = ∑
k∶x

k

∈C
i

D

k,k

Set c

i

=
�����������

�
Edges(C2)
Edges(C1) if i ∈ C1

−�Edges(C1)
Edges(C2) otherwise

Verify that c

�
Lc = �E� ×NCut and c

�
Dc = �E� (and Dc ⊥ 1)

Hence we relax Minimize NCUT(C) to

Minimize
c

�
Lc

c

�
Dc

s.t. Dc ⊥ 1

Solution: Find second smallest eigenvectors of L̃ = I −D

−1�2
AD

−1�2



SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph

Minimize c>L̃c s.t. c ? 1

Approximately Minimize normalized cut!
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SPECTRAL CLUSTERING ALGORITHM (NORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the normalized Laplacian matrix L̃ = I −D

−1�2
AD

−1�2
3 Find eigen vectors v1, . . . ,vn

of L̃ (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn



Demo



NORMALIZED CUT: ALTERNATE VIEW

If we perform random walk on graph, its the partition of graph
into group of vertices such that the probability of transiting from
one group to another is minimized

Transition matrix: D

−1
A

Largest eigenvalues and eigenvectors of above matrix correspond
to smallest eigenvalues and eigenvectors of D

−1
L = I −D

−1
A

For K-nearest neighbor graph (K-regular), same as normalized
Laplacian


