Machine Learning for Data Science (CS4786) Lecture 11

Spectral Clustering

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2016fa/

Survey

Speed of the Lecture

Too slow
Sometimes slow
Right speed
Sometimes fast
Too fast

Survey

How time consuming is each homeworks

Survey

\square
Needs more example
Needs more forma
Needs more high level pi
Needs to be slower

Competition I Out!

- Preliminary report of 1-2 pages due Oct 4th
- Form your groups
- Download data and familiarize yourself
- Jot down preliminary ideas
- In 1/2 page mention each group members contribution so far
- Competition closes Oct 27th

Spectral Clustering

- Cluster nodes in a graph.
- Analysis of social network data.

Spectral Clustering

$$
A_{i, j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

$$
n
$$

A is adjacency matrix of a graph

Spectral Clustering

$$
D_{i, i}=\sum_{j=1}^{n} A_{i, j}
$$

Spectral Clustering

$$
\operatorname{Cut}(c) \sim \frac{1}{2} c^{\top} L c
$$

Minimize $c^{\top} L c$ s.t. $c \perp \mathbf{1}$
Approximately minimize cut

Spectral Clustering Algorithm (UNNORMALIZED)

(1) Given matrix A calculate diagonal matrix D s.t. $D_{i, i}=\sum_{j=1}^{n} A_{i, j}$
(2) Calculate the Laplacian matrix $L=D-A$

- Find eigen vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of L (ascending order of eigenvalues)
(1) Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \in \mathbb{R}^{K}$
(0) Use K-means clustering algorithm on $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$

$$
\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \text { are called spectral embedding }
$$

What is the Embedding?

- Map each node in V to R^{k}
- Nodes lightly connected are farther
- Lets see some examples...

Examples

Examples

3D

More Examples

Spectral Clustering (UnNORMALIZED)

- Is cut even a good measure?

Ratio CuT

- Why cut is perhaps not a good measure?
- Fixes? Perhaps Ratio Cut: $\operatorname{CUT}\left(C_{1}, C_{2}\right)\left(\frac{1}{\left|C_{1}\right|}+\frac{1}{\left|C_{2}\right|}\right)$

Ratio CuT

- Why cut is perhaps not a good measure?
- Fixes? Perhaps Ratio Cut: $\operatorname{CUT}\left(C_{1}, C_{2}\right)\left(\frac{1}{\left|C_{1}\right|}+\frac{1}{\left|C_{2}\right|}\right)$

Normalized Cut

- Normalized cut: Minimize sum of ratio of number of edges cut per cluster and number of edges within cluster

$$
\mathrm{NCUT}=\sum_{j} \frac{\operatorname{CUT}\left(C_{j}\right)}{\operatorname{Edges}\left(C_{j}\right)}
$$

$$
\operatorname{Edges}\left(C_{i}\right)=\operatorname{degree}\left(C_{i}\right)=\sum_{t \in C_{i}} D_{t, t}
$$

NORMALIZED CuT

- Normalized cut: Minimize sum of ratio of number of edges cut per cluster and number of edges within cluster

$$
\operatorname{NCUT}=\sum_{j} \frac{\operatorname{CUT}\left(C_{j}\right)}{\operatorname{Edges}\left(C_{j}\right)}
$$

- Example $K=2$

$$
\operatorname{Edges}\left(C_{i}\right)=\operatorname{degree}\left(C_{i}\right)=\sum_{t \in C_{i}} D_{t, t}
$$

$$
\operatorname{CUT}\left(C_{1}, C_{2}\right)\left(\frac{1}{\operatorname{Edges}\left(C_{1}\right)}+\frac{1}{\operatorname{Edges}\left(C_{2}\right)}\right)
$$

- This is an NP hard problem! ... so relax

Normalized Cut

- Set $c_{i}=\left\{\begin{array}{cl}\sqrt{\frac{\operatorname{Edges}\left(C_{2}\right)}{\operatorname{Edges}\left(C_{1}\right)}} & \text { if } i \in C_{1} \\ -\sqrt{\frac{\operatorname{Edges}\left(C_{1}\right)}{\operatorname{Edges}\left(C_{2}\right)}} & \text { otherwise }\end{array}\right.$
- Verify that $c^{\top} L c=|E| \times$ NCut and $c^{\top} D c=|E|($ and $D c \perp \mathbf{1})$
- Hence we relax Minimize NCUT(C) to

$$
\text { Minimize } \frac{c^{\top} L c}{c^{\top} D c} \quad \text { s.t. } D c \perp \mathbf{1}
$$

Spectral Clustering

Minimize $c^{\top} \tilde{L} c$ s.t. $c \perp 1$

Approximately Minimize normalized cut!

- Solution: Find second smallest eigenvectors of $\tilde{L}=I-D^{-1 / 2} A D^{-1 / 2}$

Spectral Clustering Algorithm (Normalized)

(1) Given matrix A calculate diagonal matrix D s.t. $D_{i, i}=\sum_{j=1}^{n} A_{i, j}$
(2) Calculate the normalized Laplacian matrix $\tilde{L}=I-D^{-1 / 2} A D^{-1 / 2}$
(3) Find eigen vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of \tilde{L} (ascending order of eigenvalues)
(9) Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \in \mathbb{R}^{K}$
(3) Use K-means clustering algorithm on $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$

Demo

Normalized Cut: Alternate view

- If we perform random walk on graph, its the partition of graph into group of vertices such that the probability of transiting from one group to another is minimized
- Transition matrix: $D^{-1} A$
- Largest eigenvalues and eigenvectors of above matrix correspond to smallest eigenvalues and eigenvectors of $D^{-1} L=I-D^{-1} A$
- For K-nearest neighbor graph (K-regular), same as normalized Laplacian

