## Machine Learning for Data Science (CS4786) Lecture 10

Spectral Clustering

Course Webpage :

http://www.cs.cornell.edu/Courses/cs4786/2016fa/

## Survey

- There will be 2 surveys and the final course eval
  - If overall class participation is above 90% on all 3
    I will drop all your worst assignments
- Survey one posted on CMS due by 28th sep
- Surveys are all completely anonymous and will help me make the class more fun. So be open.

## Spectral Clustering



- Cluster nodes in a graph.
- Analysis of social network data.

#### Spectral Clustering

$$A_{i,j} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$



*A* is adjacency matrix of a graph

#### EXAMPLE



#### Cut as few edges as possible

#### Spectral Clustering



 $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$ 

#### EXAMPLE



#### GRAPH CLUSTERING: CUTS

- Partition nodes so that as few edges are cut (Mincut)
- What has this got to do with the Laplacian matrix?

Consider case when we have/want 2 clusters. Let  $c_j = -1$  if  $x_j$  belongs to cluster 0 and  $c_j = 1$  if  $x_j$  belongs to cluster 1

$$\operatorname{CUT} = \sum_{(i,j)\in E} \mathbf{1}_{c_i \neq c_j} = \frac{1}{2} c^{\mathsf{T}} L c$$

#### CUTS AND LAPLACIAN



#### SPECTRAL CLUSTERING, K = 2

Hence to find the solution we need to solve for

Minimize  $c^{\top}Lc$  s.t.  $\forall i \in [n], |c_i| = 1$ 

Since  $\forall i \in [n], |c_i| = 1$ , we have  $||c||_2 = \sqrt{n}$  and so relaxing (approximating) the optimization:

Minimize  $c^{\top}Lc$  s.t.  $||c||_2 = \sqrt{n}$ 

Hence solution *c* to above is an Eigen vector, first smallest one is the all 1's vector (for connected graph), second smallest one is our solution

To get clustering assignment we simply threshold at 0

#### SPECTRAL CLUSTERING, K > 2

- Solution obtained by considering the second smallest up to K<sup>th</sup> smallest eigenvectors
- If instead of  $c_i = \pm 1$  make for each  $k \in [K]$ ,  $c_i^k$  to be indicator of whether point *i* belongs to cluster *K* or not, then

$$\operatorname{Cut} = \sum_{k=1}^{K} (c^k)^{\mathsf{T}} L c^k$$

# Spectral Clustering Algorithm (Unnormalized)

- Given matrix *A* calculate diagonal matrix *D* s.t.  $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- ② Calculate the Laplacian matrix L = D A
- 3 Find eigen vectors  $\mathbf{v}_1, \ldots, \mathbf{v}_n$  of *L* (ascending order of eigenvalues)
- ④ Pick the *K* eigenvectors with smallest eigenvalues to get  $\mathbf{y}_1, \ldots, \mathbf{y}_n \in \mathbb{R}^K$
- Use K-means clustering algorithm on  $y_1, \ldots, y_n$

 $\mathbf{y}_1, \ldots, \mathbf{y}_n$  are called spectral embedding

Embeds the n nodes into K-1 dimensional vectors

## SPECTRAL CLUSTERING (UNNORMALIZED)

- Min-cut on a graph can be efficiently computed
- Why bother with the approximate algorithm
- Is cut even a good measure?

• Why cut is perhaps not a good measure?



#### RATIO CUT

- Why cut is perhaps not a good measure?
- Fixes?

#### RATIO CUT

- Why cut is perhaps not a good measure?
- Fixes? Perhaps Ratio Cut : CUT( $C_1, C_2$ )  $\left(\frac{1}{|C_1|} + \frac{1}{|C_2|}\right)$

 Normalized cut: Minimize sum of ratio of number of edges cut per cluster and number of edges within cluster

NCUT = 
$$\sum_{j} \frac{\text{CUT}(C_j)}{\text{Edges}(C_j)}$$



 $\operatorname{Edges}(C_i) = \operatorname{degree}(C_i) = \sum_{t \in C_i} D_{t,t}$ 

 Normalized cut: Minimize sum of ratio of number of edges cut per cluster and number of edges within cluster

$$NCUT = \sum_{j} \frac{CUT(C_j)}{Edges(C_j)}$$

• Example K = 2

$$Edges(C_i) = degree(C_i) = \sum_{t \in C_i} D_{t,t}$$
$$CUT(C_1, C_2) \left( \frac{1}{Edges(C_1)} + \frac{1}{Edges(C_2)} \right)$$

• This is an NP hard problem! ... so relax

• Set 
$$c_i = \begin{cases} \sqrt{\frac{\text{Edges}(C_2)}{\text{Edges}(C_1)}} & \text{if } i \in C_1 \\ -\sqrt{\frac{\text{Edges}(C_1)}{\text{Edges}(C_2)}} & \text{otherwise} \end{cases}$$

• Verify that  $c^{\top}Lc = |E| \times NCut$  and  $c^{\top}Dc = |E|$  (and  $Dc \perp 1$ )

• Hence we relax Minimize NCUT(C) to

Minimize 
$$\frac{c^{\top}Lc}{c^{\top}Dc}$$
 s.t.  $Dc \perp \mathbf{1}$ 

• Solution: Find second smallest eigenvectors of  $\tilde{L} = I - D^{-1/2}AD^{-1/2}$ 

- ① Given matrix *A* calculate diagonal matrix *D* s.t.  $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- ② Calculate the normalized Laplacian matrix  $\tilde{L} = I D^{-1/2}AD^{-1/2}$
- 3 Find eigen vectors  $\mathbf{v}_1, \ldots, \mathbf{v}_n$  of  $\tilde{L}$  (ascending order of eigenvalues)
- ④ Pick the *K* eigenvectors with smallest eigenvalues to get  $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$
- Use K-means clustering algorithm on  $y_1, \ldots, y_n$

#### NORMALIZED CUT: ALTERNATE VIEW

- If we perform random walk on graph, its the partition of graph into group of vertices such that the probability of transiting from one group to another is minimized
- Transition matrix:  $D^{-1}A$
- Largest eigenvalues and eigenvectors of above matrix correspond to smallest eigenvalues and eigenvectors of  $D^{-1}L = I D^{-1}A$
- For *K*-nearest neighbor graph (K-regular), same as normalized Laplacian