Machine Learning for Data Science (CS4786) Lecture 10

Spectral Clustering

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2016fa/

Survey

- There will be 2 surveys and the final course eval
- If overall class participation is above 90% on all 3 I will drop all your worst assignments
- Survey one posted on CMS due by 28th sep
- Surveys are all completely anonymous and will help me make the class more fun. So be open.

Spectral Clustering

- Cluster nodes in a graph.
- Analysis of social network data.

Spectral Clustering

$$
A_{i, j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

$$
n
$$

A is adjacency matrix of a graph

EXAMPLE

Cut as few edges as possible

Spectral Clustering

$$
D_{i, i}=\sum_{j=1}^{n} A_{i, j}
$$

$$
\boxed{ }
$$

Graph Clustering: Cuts

- Partition nodes so that as few edges are cut (Mincut)
- What has this got to do with the Laplacian matrix?

CUTS AND LAPLACIAN

Consider case when we have/want 2 clusters. Let $c_{j}=-1$ if x_{j} belongs to cluster 0 and $c_{j}=1$ if x_{j} belongs to cluster 1

$$
\mathrm{CUT}=\sum_{(i, j) \in E} \mathbf{1}_{c_{i} \neq c_{j}}=\frac{1}{2} c^{\top} L c
$$

CuTS and Laplacian

$$
\begin{aligned}
\operatorname{Cut}(c) & =\sum_{(i, j) \in E} \mathbf{1}_{c_{i} \neq c_{j}}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} \mathbf{1}_{c_{i} \neq c_{j}} \\
& \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} \frac{1}{4}\left(c_{i}-c_{j}\right)^{2} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} \frac{1}{4}\left(c_{i}^{2}+c_{j}^{2}-2 c_{i} c_{j}\right) \\
& \left.=\frac{1}{4}\left(\sum_{i=1}^{n}\left(\sum_{j=1}^{n} A_{i, j}\right) c_{i}^{2}+\sum_{j=1}^{n}\left(\sum_{i=1}^{n} A_{i, j}\right) c_{j}^{2}-2 \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} c_{i} c_{j}\right)\right) \\
& \left.=\frac{1}{4}\left(2 \sum_{i=1}^{n} D_{i, i} c_{i}^{2}-2 \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} c_{i} c_{j}\right)\right) \\
& =\frac{1}{2}\left(c^{\top} D c-c^{\top} A c\right)=\frac{1}{2} c^{\top} L c
\end{aligned}
$$

Spectral Clustering, K = 2

Hence to find the solution we need to solve for

$$
\text { Minimize } c^{\top} L c \quad \text { s.t. } \forall i \in[n],\left|c_{i}\right|=1
$$

Since $\forall i \in[n],\left|c_{i}\right|=1$, we have $\|c\|_{2}=\sqrt{n}$ and so relaxing (approximating) the optimization:

$$
\text { Minimize } c^{\top} L c \quad \text { s.t. }\|c\|_{2}=\sqrt{n}
$$

Hence solution c to above is an Eigen vector, first smallest one is the all 1's vector (for connected graph), second smallest one is our solution

To get clustering assignment we simply threshold at 0

Spectral Clustering, K > 2

- Solution obtained by considering the second smallest up to $K^{\text {th }}$ smallest eigenvectors
- If instead of $c_{i}= \pm 1$ make for each $k \in[K], c_{i}^{k}$ to be indicator of whether point i belongs to cluster K or not, then

$$
\text { Cut }=\sum_{k=1}^{K}\left(c^{k}\right)^{\top} L c^{k}
$$

Spectral Clustering Algorithm (UNNORMALIZED)

(1) Given matrix A calculate diagonal matrix D s.t. $D_{i, i}=\sum_{j=1}^{n} A_{i, j}$
(2) Calculate the Laplacian matrix $L=D-A$

- Find eigen vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of L (ascending order of eigenvalues)
(1) Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \in \mathbb{R}^{K}$
© Use K-means clustering algorithm on $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$

$$
\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \text { are called spectral embedding }
$$

Embeds the n nodes into K-1 dimensional vectors

Spectral Clustering (UnNormalized)

- Min-cut on a graph can be efficiently computed
- Why bother with the approximate algorithm
- Is cut even a good measure?

Normalized Cut

- Why cut is perhaps not a good measure?

- Why cut is perhaps not a good measure?
- Fixes?

Ratio CuT

- Why cut is perhaps not a good measure?
- Fixes? Perhaps Ratio Cut: $\operatorname{CUT}\left(C_{1}, C_{2}\right)\left(\frac{1}{\left|C_{1}\right|}+\frac{1}{\left|C_{2}\right|}\right)$

Normalized Cut

- Normalized cut: Minimize sum of ratio of number of edges cut per cluster and number of edges within cluster

$$
\mathrm{NCUT}=\sum_{j} \frac{\operatorname{CUT}\left(C_{j}\right)}{\operatorname{Edges}\left(C_{j}\right)}
$$

$$
\operatorname{Edges}\left(C_{i}\right)=\operatorname{degree}\left(C_{i}\right)=\sum_{t \in C_{i}} D_{t, t}
$$

NORMALIZED CuT

- Normalized cut: Minimize sum of ratio of number of edges cut per cluster and number of edges within cluster

$$
\operatorname{NCUT}=\sum_{j} \frac{\operatorname{CUT}\left(C_{j}\right)}{\operatorname{Edges}\left(C_{j}\right)}
$$

- Example $K=2$

$$
\operatorname{Edges}\left(C_{i}\right)=\operatorname{degree}\left(C_{i}\right)=\sum_{t \in C_{i}} D_{t, t}
$$

$$
\operatorname{CUT}\left(C_{1}, C_{2}\right)\left(\frac{1}{\operatorname{Edges}\left(C_{1}\right)}+\frac{1}{\operatorname{Edges}\left(C_{2}\right)}\right)
$$

- This is an NP hard problem! ... so relax

Normalized Cut

- Set $c_{i}=\left\{\begin{array}{cl}\sqrt{\frac{\operatorname{Edges}\left(C_{2}\right)}{\operatorname{Edges}\left(C_{1}\right)}} & \text { if } i \in C_{1} \\ -\sqrt{\frac{\operatorname{Edges}\left(C_{1}\right)}{\operatorname{Edges}\left(C_{2}\right)}} & \text { otherwise }\end{array}\right.$
- Verify that $c^{\top} L c=|E| \times$ NCut and $c^{\top} D c=|E|($ and $D c \perp \mathbf{1})$
- Hence we relax Minimize NCUT(C) to

$$
\text { Minimize } \frac{c^{\top} L c}{c^{\top} D c} \quad \text { s.t. } D c \perp \mathbf{1}
$$

- Solution: Find second smallest eigenvectors of $\tilde{L}=I-D^{-1 / 2} A D^{-1 / 2}$

Spectral Clustering Algorithm (Normalized)

(1) Given matrix A calculate diagonal matrix D s.t. $D_{i, i}=\sum_{j=1}^{n} A_{i, j}$
(2) Calculate the normalized Laplacian matrix $\tilde{L}=I-D^{-1 / 2} A D^{-1 / 2}$
(3) Find eigen vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of \tilde{L} (ascending order of eigenvalues)
(9) Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \in \mathbb{R}^{K}$
(3) Use K-means clustering algorithm on $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$

Normalized Cut: Alternate view

- If we perform random walk on graph, its the partition of graph into group of vertices such that the probability of transiting from one group to another is minimized
- Transition matrix: $D^{-1} A$
- Largest eigenvalues and eigenvectors of above matrix correspond to smallest eigenvalues and eigenvectors of $D^{-1} L=I-D^{-1} A$
- For K-nearest neighbor graph (K-regular), same as normalized Laplacian

