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Survey

• There will be 2 surveys and the final course eval 

• If overall class participation is above 90% on all 3  
I will drop all your worst assignments 

• Survey one posted on CMS due by 28th sep 

• Surveys are all completely anonymous and will help 
me make the class more fun. So be open.



TELL ME WHO YOUR FRIENDS ARE . . .

Cluster nodes in a graph.
Analysis of social network data.

SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph
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EXAMPLE

Cut as few edges as possible
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GRAPH CLUSTERING: CUTS

Partition nodes so that as few edges are cut (Mincut)

What has this got to do with the Laplacian matrix?



CUTS AND LAPLACIAN

Consider case when we have/want 2 clusters. Let c

j

= −1 if x
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SPECTRAL CLUSTERING, K = 2

Hence to find the solution we need to solve for

Minimize c

�
Lc s.t. ∀i ∈ [n], �c

i

� = 1

Since ∀i ∈ [n], �c
i

� = 1, we have �c�2 =√n and so relaxing
(approximating) the optimization:

Minimize c

�
Lc s.t. �c�2 =√n

Hence solution c to above is an Eigen vector, first smallest one is the all
1’s vector (for connected graph), second smallest one is our solution

To get clustering assignment we simply threshold at 0



SPECTRAL CLUSTERING, K > 2

Solution obtained by considering the second smallest up to K

th

smallest eigenvectors
If instead of c

i

= ±1 make for each k ∈ [K], c

k

i

to be indicator of
whether point i belongs to cluster K or not, then

Cut = K�
k=1
(ck)�Lc

k

Proceeding in same fashion as for binary case, we can conclude
that solution to relaxed c

k’s above are the bottom k eigen vectors
Finally to obtain a clustering we use k means on these c

k’s



SPECTRAL CLUSTERING ALGORITHM
(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn

y1, . . . ,yn are called spectral embedding

Embeds the n nodes into K-1 dimensional vectors



SPECTRAL CLUSTERING (UNNORMALIZED)

Min-cut on a graph can be efficiently computed

Why bother with the approximate algorithm

Is cut even a good measure?



NORMALIZED CUT

Why cut is perhaps not a good measure?

Normalized cut: Minimize sum of ratio of number of edges cut
per cluster and number of edges within cluster

NCUT =�
j

CUT(C
j

)
Edges(C

j

)
Example K = 2

CUT(C1,C2)� 1
Edges(C1) +

1
Edges(C2)�

Minimize CUT(C1,C2) s.t. Edges(C1) = Edges(C2)
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RATIO CUT

Why cut is perhaps not a good measure?

Fixes?

Perhaps Ratio Cut ∶ CUT(C1,C2)� 1�C1� + 1�C2��
Set c

i

=
�����������

� �C2��C1� if i ∈ C1

−� �C1��C2� otherwise

Verify that c

�
Lc = n ×Ratio Cut and �c�2 =√n (and c ⊥ 1)

Relaxed solution is same as Unnormalized Spectral clustering
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X
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NORMALIZED CUT

First note that Edges(C
i

) = ∑
k∶x

k

∈C
i

D

k,k

Set c

i

=
�����������

�
Edges(C2)
Edges(C1) if i ∈ C1

−�Edges(C1)
Edges(C2) otherwise

Verify that c

�
Lc = �E� ×NCut and c

�
Dc = �E� (and Dc ⊥ 1)

Hence we relax Minimize NCUT(C) to

Minimize
c

�
Lc

c

�
Dc

s.t. Dc ⊥ 1

Solution: Find second smallest eigenvectors of L̃ = I −D

−1�2
AD

−1�2



SPECTRAL CLUSTERING ALGORITHM (NORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the normalized Laplacian matrix L̃ = I −D

−1�2
AD

−1�2
3 Find eigen vectors v1, . . . ,vn

of L̃ (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn



NORMALIZED CUT: ALTERNATE VIEW

If we perform random walk on graph, its the partition of graph
into group of vertices such that the probability of transiting from
one group to another is minimized

Transition matrix: D

−1
A

Largest eigenvalues and eigenvectors of above matrix correspond
to smallest eigenvalues and eigenvectors of D

−1
L = I −D

−1
A

For K-nearest neighbor graph (K-regular), same as normalized
Laplacian


