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Lets build an Algorithm
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K-MEANS CLUSTERING

For all j ∈ [K], initialize cluster centroids r̂

1
j randomly and set m = 1

Repeat until convergence (or until patience runs out)
1 For each t ∈ {1, . . . ,n}, set cluster identity of the point
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�xt − r̂

m
j �

2 For each j ∈ [K], set new representative as

r̂

m+1
j = 1

�Ĉm
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j

xt

3 m← m + 1

t



KX

j=1

X

t2Cj

������
xt �

1

|Cj |
X

s2Cj

xs

������

2

= min
r1,...,rK

KX

j=1

X

t2Cj

kxt � rjk2

K-means objective
K-MEANS CONVERGENCE

K-means algorithm converges to local minima of objective
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�xt − rj�22

Proof:
Clustering assignment improves objective:
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1 , . . . , r
m
K)

(By definition of ĉm(xt))
Computing centroids improves objective:
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m
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(By the fact about centroid)

Minimize above objective over c and r1,…,rK

=

M5 = min
r1,...,rK

O(c; r1, . . . , rK)



Fact: Centroid is Minimizer
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K-MEANS CONVERGENCE

K-means algorithm converges to local minima of objective
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O �ĉm−1; rm
1 , . . . , r

m
K� ≥ O (ĉm; rm
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Lets build an Algorithm

CLUSTERING CRITERION

Minimize total within-cluster dissimilarity
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SINGLE LINK CLUSTERING

Initialize n clusters with each point xt to its own cluster

Until there are only K clusters, do

1 Find closest two clusters and merge them into one cluster

2 Update between cluster distances (called proximity matrix)

dissimilarity(Ci, Cj) = min

t2Ci,s2Cj

dissimilarity(xt, xs)
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SINGLE LINK OBJECTIVE

Objective for single-link:

M4 = min
xs,xt∶c(xs)≠c(xt) �xs − xt�22

Single link clustering is optimal for above objective!

CLUSTERING CRITERION

Minimize total within-cluster dissimilarity
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SINGLE LINK OBJECTIVE

Objective for single-link:

M4 = min
xs,xt∶c(xs)≠c(xt) �xs − xt�22

Single link clustering is optimal for above objective!

Say c is solution produced by single-link clustering

Proof:

Say c0 6= c then,

9 t, s s.t. c0(xt) 6= c

0(xs) but c(xt) = c(xs)

xt
xs

a b
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Distance of points merged  
(on the tree)

Key observation:



TELL ME WHO YOUR FRIENDS ARE . . .

Cluster nodes in a graph.
Analysis of social network data.

SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph



SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A
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SPECTRAL CLUSTERING ALGORITHM
(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn



EXAMPLE

1

2 3

4

5 6



GRAPH CLUSTERING

Fact: For a connected graph, exactly one, the smallest of
eigenvalues is 0, corresponding eigenvector is 1 = (1, . . . ,1)�
Proof: Sum of each row of L is 0 because D

i,i = ∑n

j=1 A

i,j and
L = D −A
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GRAPH CLUSTERING

Fact: For general graph, number of 0 eigenvalues correspond to
number of connected components. The corresponding
eigenvectors are all 1’s on the nodes of connected components
Proof: L is block diagonal. Use connected graph result on each
component.
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GRAPH CLUSTERING

Fact: For general graph, number of 0 eigenvalues correspond to
number of connected components. The corresponding
eigenvectors are all 1’s on the nodes of connected components
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GRAPH CLUSTERING: CUTS

Partition nodes so that as few edges are cut (Mincut)

What has this got to do with the Laplacian matrix?

cut(c) =
KX

j=1

c>k Lck

Let ck 2 R|V |
be s.t. each coordinate indicates if the corresponding node

belongs to cluster k
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SPECTRAL CLUSTERING ALGORITHM
(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn

Find Clustering c to minimize

KX
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