Machine Learning for Data Science (CS4786)

Lecture 9

Single Link Clustering, Spectral Clustering

Course Webpage :
http://www.cs.cornell.edu/Courses/csd4786/2016fa/
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K-MEANS CLUSTERING

@ For all j € [K], initialize cluster centroids f'} randomly and set m =1

@ Repeat until convergence (or until patience runs out)
©Q Foreachte{l,..., n}, set cluster identity of the point

" (x¢) = argmin ||x; — 1|
je[K]

@ For each j € [K], set new representative as
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Fact: Centroid is Minimizer
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K-MEANS CONVERGENCE

@ K-means algorithm converges to local minima of objective

@ Proof:
Clustering assignment improves objective:

o(e" ..., rg) >0 @1, ..., Iy

(By definition of ¢"(x;))
Computing centroids improves objective:

o™, ..., ry) >0 (?:m; r’f”l ..... rl’?”)

(By the fact about centroid)
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M5 = min dissimilarity (x;, x5 )
Xs,X¢:C(Xs ) #C(X¢t)
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SINGLE LINK CLUSTERING

@ Initialize n clusters with each point x; to its own cluster

@ Until there are only K clusters, do

© Find closest two clusters and merge them into one cluster

dissimilarity(C;,C;) = min dissimilarity(x;,x
Y( v ]) tGCi,SECj Y( t S)
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SINGLE LINK OBJECTIVE

Objective for single-link:

Ms = min dissimilarity (x;, x;)
Xs,X¢:C(Xs ) #C(X¢t)

Single link clustering is optimal for above objective!



SINGLE LINK OBJECTIVE

Proot:

Say c is solution produced by single-link clustering

Key observation: | |
min  dissimilarity (z;, ;) >D|stance of points merged
t,s:c(xi)F#c(xy) (On the ’[I’ee)

Say ¢’ # c then,
¢, s s.t. (1) # (x5) but c(xt) = e(xy)
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SPECTRAL CLUSTERING

@ Cluster nodes in a graph.

@ Analysis of social network data.



SPECTRAL CLUSTERING

n

A is adjacency matrix of a graph



SPECTRAL CLUSTERING ALGORITHM

(UNNORMALIZED)

@ Given matrix A calculate diagonal matrix D s.t. D; ; = 2;7:1 Ajj

@ C(alculate the Laplacian matrix L=D - A
@ Find eigen vectors vy, .. ., v,, of L (ascending order of eigenvalues)

© Pick the K eigenvectors with smallest eigenvalues to get
K
Yi,-.-, Yn e R

@ Use K-means clustering algorithm on yq, . . ., Vn



EXAMPLE




GRAPH CLUSTERING

@ Fact: For a connected graph, exactly one, the smallest of
eigenvalues is 0, corresponding eigenvectoris 1 = (1,.. ., 1)'

Proof: Sum of each row of L is 0 because D; ; = 2}11 A;jand
L=D-A



GRAPH CLUSTERING

@ Fact: For general graph, number of 0 eigenvalues correspond to
number of connected components. The corresponding
eigenvectors are all 1’s on the nodes of connected components

Proof: L is block diagonal. Use connected graph result on each
component.
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GRAPH CLUSTERING: CUTS

@ Partition nodes so that as few edges are cut (Mincut)

@ What has this got to do with the Laplacian matrix?

Let ¢, € RVl be s.t. each coordinate indicates if the corresponding node

belongs to cluster k

K

cut(c) = Z ¢, Leg

j=1
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SPECTRAL CLUSTERING ALGORITHM

(UNNORMALIZED)

Find Clustering ¢ to minimize
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