Machine Learning for Data Science (CS4786) Lecture 8

Clustering

Course Webpage :

http://www.cs.cornell.edu/Courses/cs4786/2016fa/

Announcement

• Those of you who submitted HW1 and are still on waitlist email me.

CLUSTERING

CLUSTERING

- Grouping sets of data points s.t.
 - points in same group are similar
 - points in different groups are dissimilar

 A form of unsupervised classification where there are no predefined labels

Some Notations

- *K*ary clustering is a partition of x_1, \ldots, x_n into *K* groups
- For now assume the magical *K* is given to use
- Clustering given by C_1, \ldots, C_K , the partition of data points.
- Given a clustering, we shall use $c(\mathbf{x}_t)$ to denote the cluster identity of point \mathbf{x}_t according to the clustering.
- Let n_j denote $|C_j|$, clearly $\sum_{j=1}^K n_j = n$.

How do we formalize a good clustering objective?

How do we formalize?

Say dissimilarity $(\mathbf{x}_t, \mathbf{x}_s)$ measures dissimilarity between $\mathbf{x}_t \& \mathbf{x}_s$

Given two clustering $\{C_1, \ldots, C_K\}$ (or c) and $\{C'_1, \ldots, C'_K\}$ (or c') How do we decide which is better?

points in same cluster are not dissimilar
points in different clusters are dissimilar

CLUSTERING CRITERION

• Minimize total within-cluster dissimilarity

$$M_1 = \sum_{j=1}^{K} \sum_{s,t \in C_j} \text{dissimilarity}(x_t, x_s)$$

• Maximize between-cluster dissimilarity

$$M_2 = \sum_{\mathbf{x}_s, \mathbf{x}_t: c(\mathbf{x}_s) \neq c(\mathbf{x}_t)} \text{dissimilarity}(x_t, x_s)$$

• Maximize smallest between-cluster dissimilarity

 $M_3 = \min_{\mathbf{x}_s, \mathbf{x}_t: c(\mathbf{x}_s) \neq c(\mathbf{x}_t)} \text{dissimilarity}(x_t, x_s)$

• Minimize largest within-cluster dissimilarity

$$M_4 = \max_{j \in [K]} \max_{s,t \in C_j} \text{dissimilarity}(x_t, x_s)$$

CLUSTERING CRITERION

• Minimize average dissimilarity within cluster

$$M_{6} = \sum_{j=1}^{K} \frac{1}{|C_{j}|} \sum_{s \in C_{j}} \text{dissimilarity} (\mathbf{x}_{s}, C_{j})$$
$$= \sum_{j=1}^{K} \frac{1}{|C_{j}|} \sum_{s \in C_{j}} \left(\sum_{t \in C_{j}, t \neq s} \text{dissimilarity} (\mathbf{x}_{s}, \mathbf{x}_{t}) \right)$$
$$= \sum_{j=1}^{K} \frac{1}{|C_{j}|} \sum_{s \in C_{j}} \left(\sum_{t \in C_{j}, t \neq s} \|\mathbf{x}_{s} - \mathbf{x}_{t}\|_{2}^{2} \right)$$

• Minimize within-cluster variance: $\mathbf{r}_j = \frac{1}{n_j} \sum_{\mathbf{x} \in C_j} \mathbf{x}$

$$M_5 = \sum_{j=1}^{K} \sum_{t \in C_j} \left\| \mathbf{x}_t - \mathbf{r}_j \right\|_2^2$$

How different are these criteria?

CLUSTERING CRITERION

- minimizing $M_1 \equiv \text{maximizing } M_2$
- minimizing $M_5 \equiv \text{minimizing } M_6$

CLUSTERING

- Multiple clustering criteria all equally valid
- Different criteria lead to different algorithms/solutions
- Which notion of distances or costs we use matter

Lets build algorithm for two criteria

1
$$M_5 = \sum_{j=1}^{K} \sum_{t \in C_j} \|\mathbf{x}_t - \mathbf{r}_j\|_2^2$$

2
$$M_3 = \min_{\mathbf{x}_s, \mathbf{x}_t: c(\mathbf{x}_s) \neq c(\mathbf{x}_t)} \text{dissimilarity}(x_t, x_s)$$

Lets build an Algorithm

$$M_{5} = \sum_{j=1}^{K} \sum_{t \in C_{j}} \left\| \mathbf{x}_{t} - \mathbf{r}_{j} \right\|_{2}^{2}$$

where $\mathbf{r}_{j} = \frac{1}{|C_{j}|} \sum_{t \in C_{j}} \mathbf{x}_{t}$

K-MEANS CLUSTERING

- For all $j \in [K]$, initialize cluster centroids $\hat{\mathbf{r}}_{j}^{1}$ randomly and set m = 1
- Repeat until convergence (or until patience runs out)
 ① For each *t* ∈ {1, ..., *n*}, set cluster identity of the point

$$\hat{c}^{m}(\mathbf{x}_{t}) = \underset{j \in [K]}{\operatorname{argmin}} \|\mathbf{x}_{t} - \hat{\mathbf{r}}_{j}^{m}\|$$

2 For each $j \in [K]$, set new representative as

$$\hat{\mathbf{r}}_{j}^{m+1} = \frac{1}{|\hat{C}_{j}^{m}|} \sum_{t \in \hat{C}_{j}^{m}} \mathbf{x}_{t}$$

3
$$m \leftarrow m + 1$$

K-MEANS CONVERGENCE

• K-means algorithm converges to local minima of objective

$$O(c; \mathbf{r}_1, \ldots, \mathbf{r}_K) = \sum_{j=1}^K \sum_{c(\mathbf{x}_t)=j} \|\mathbf{x}_t - \mathbf{r}_j\|_2^2$$

• Proof:

Clustering assignment improves objective:

 $O\left(\hat{c}^{m-1};\mathbf{r}_1^m,\ldots,\mathbf{r}_K^m\right) \geq O\left(\hat{c}^m;\mathbf{r}_1^m,\ldots,\mathbf{r}_K^m\right)$

(By definition of $\hat{c}^m(\mathbf{x}_t)$) Computing centroids improves objective:

$$O\left(\hat{c}^{m};\mathbf{r}_{1}^{m},\ldots,\mathbf{r}_{K}^{m}\right) \geq O\left(\hat{c}^{m};\mathbf{r}_{1}^{m+1},\ldots,\mathbf{r}_{K}^{m+1}\right)$$

(By the fact about centroid)

Lets build an Algorithm

 $M_3 = \min_{\mathbf{x}_s, \mathbf{x}_t: c(\mathbf{x}_s) \neq c(\mathbf{x}_t)} \text{dissimilarity}(x_t, x_s)$

dissimilarity $(C_i, C_j) = \min_{t \in C_i, s \in C_j} \text{dissimilarity}(\mathbf{x}_t, \mathbf{x}_s)$

 $\operatorname{dissimilarity}(C_i, C_j) = \min_{t \in C_i, s \in C_j} \operatorname{dissimilarity}(\mathbf{x}_t, \mathbf{x}_s)$

 $\operatorname{dissimilarity}(C_i, C_j) = \min_{t \in C_i, s \in C_j} \operatorname{dissimilarity}(\mathbf{x}_t, \mathbf{x}_s)$

- Initialize *n* clusters with each point \mathbf{x}_t to its own cluster
- Until there are only <u>K</u> clusters, do
 - Image: Find closest two clusters and merge them into one cluster
 - 2 Update between cluster distances (called proximity matrix)

- Initialize *n* clusters with each point \mathbf{x}_t to its own cluster
- Until there are only <u>K</u> clusters, do
 - **1** Find closest two clusters and merge them into one cluster
 - 2 Update between cluster distances (called proximity matrix)

dissimilarity $(C_i, C_j) = \min_{t \in C_i, s \in C_j} \text{dissimilarity}(\mathbf{x}_t, \mathbf{x}_s)$

Objective for single-link:

$M_3 = \min_{\mathbf{x}_s, \mathbf{x}_t: c(\mathbf{x}_s) \neq c(\mathbf{x}_t)} \text{dissimilarity}(x_t, x_s)$

Single link clustering is optimal for above objective!