Machine Learning for Data Science (CS4786)

Lecture 8

Clustering

Course Webpage :
http://www.cs.cornell.edu/Courses/csd4786/2016fa/



Announcement

* Those of you who submitted HW1 and are still on
waltlist emall me.



CLUSTERING
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CLUSTERING

- @Grouping sets of data points s.t.
- points in same group are similar
- points in different groups are dissimilar

- A form of unsupervised classification where
there are no predefined labels



SOME NOTATIONS

@ Kary clustering is a partition of xy, . . ., x; into K groups
@ For now assume the magical K is given to use
@ Clustering given by Cq, .. ., Ck, the partition of data points.

@ Given a clustering, we shall use c(x;) to denote the cluster identity
of point x; according to the clustering.

@ Let n; denote |Cj|, clearly Z]K: 1 =1,



How do we formalize a good
clustering objective”



How do we formalize”

Say dissimilarity(x;,Xs) measures dissimilarity between x; & x;

Given two clustering {C4,...,Ck} (or ¢) and {C7,...,C%} (or )

How do we decide which is better?

points in same cluster are not dissimilar
points in different clusters are dissimilar



CLUSTERING CRITERION

@ Minimize total within-cluster dissimilarity

K
My => > dissimilarity(x;, x)
j=1s,teC;

® Maximize between-cluster dissimilarity

My = » dissimilarity(x;, x;)

Xs,X¢:C(Xs ) #C(X¢t)
@ Maximize smallest between-cluster dissimilarity

M3 = min  dissimilarity(x;, x;)
Xs,Xt:C(Xs ) #=C(X¢t)

@ Minimize largest within-cluster dissimilarity

M, = max max dissimilarity (x;, xs)
]G[K] S,tEC]'



CLUSTERING CRITERION

@ Minimize average dissimilarity within cluster

K
1
Mg =) —— > dissimilarity (xs, Cj)
j=1 ‘C]| seC;
K1
=Y — > | > dissimilarity (xs, x;)
j=1 ‘ ]‘ S€ C tECj,tis
K1 2
=Z—Z Z |xs = x¢]|3
]:1‘ ]‘ C tECj,tis

e Minimize within-cluster variance: r; = = 3, .- X
J YZ]' X€ ]

K 2
Ms =2, 2, |xi =l

j=1 tGC]'



How different are these criteria”



CLUSTERING CRITERION

@ minimizing M; = maximizing M,

@ minimizing Ms = minimizing Mg



CLUSTERING

@ Multiple clustering criteria all equally valid
@ Different criteria lead to different algorithms/solutions

@ Which notion of distances or costs we use matter



|_ets build algorithm for two

criteria
. |
1 Z th -1
o Ms = min  dissimilarity(x;, x;)

Xs,X¢:C(Xs ) #C(X¢t)



|_ets bulld an Algorithm

K | 2
Ms =2, ), Ix -l

j=1 tEC]

1
where r; = @ t%;} X4
J
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K-MEANS CLUSTERING

@ For all j € [K], initialize cluster centroids f'} randomly and set m =1

@ Repeat until convergence (or until patience runs out)
©Q Foreachte{l,..., n}, set cluster identity of the point

" (x¢) = argmin ||x; — 1|
je[K]

@ For each j € [K], set new representative as

fm+1 - 1 Xt
j ~
|C;ﬂ| te@}”

QO m—m+1



K-MEANS CONVERGENCE

@ K-means algorithm converges to local minima of objective

@ Proof:
Clustering assignment improves objective:

o(e" ..., rg) >0 @1, ..., Iy

(By definition of ¢"(x;))
Computing centroids improves objective:

o™, ..., ry) >0 (?:m; r’f”l ..... rl’?”)

(By the fact about centroid)



|_ets bulld an Algorithm

M5 = min dissimilarity (x;, x5 )
Xs,X¢:C(Xs ) #C(X¢t)
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dissimilarity(C;,C;) = min dissimilarity(x;,x
y( ’ ]) tECi,SECj y( ' S)



Demo

o

dissimilarity(C;,C;) = min dissimilarity(x;,x
y( ’ ]) tECi,SECj y( ' S)



Demo

o

dissimilarity(C;,C;) = min dissimilarity(x;,x
y( ’ ]) tEC@',SECj y( ' S)



Demo

o

dissimilarity(C;,C;) = min dissimilarity(x;,x
y( ’ ]) tECi,SECj y( ' S)



Demo

J

dissimilarity(C;,C;) = min dissimilarity(x;,x
y( ’ ]) tEC@',SECj y( ' S)



Demo

dissimilarity(C;,C;) = min dissimilarity(x;,x
y( ’ ]) tECi,SECj y( ' S)



Demo

C_9

dissimilarity(C;,C;) = min dissimilarity(x;, x
y( ’ ]) tEC@',SECj y( ' S)
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SINGLE LINK CLUSTERING

@ Initialize n clusters with each point x; to its own cluster

@ Until there are only K clusters, do

© Find closest two clusters and merge them into one cluster

© Update between cluster distances (called proximity matrix)



SINGLE LINK CLUSTERING

@ Initialize n clusters with each point x; to its own cluster

@ Until there are only K clusters, do

© Find closest two clusters and merge them into one cluster

© Update between cluster distances (called proximity matrix)

dissimilaritv(C.. C;) = min dissimilarity(x;., x
Y( 19 J) tECr@,SECj Y( t S)



SINGLE LINK OBJECTIVE

Objective for single-link:

Ms = min dissimilarity (x;, x;)
Xs,X¢:C(Xs ) #C(X¢t)

Single link clustering is optimal for above objective!



