Machine Learning for Data Science (CS4786) Lecture 7

Kernel PCA, Clustering

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2016fa/

EXAMPLE

EXAMPLE

Kernel Trick

- Essence of Kernel trick:
- If we can write down an algorithm only in terms of $\Phi\left(\mathbf{x}_{t}\right)^{\top} \Phi\left(\mathbf{x}_{s}\right)$ for data points \mathbf{x}_{t} and \mathbf{x}_{s}
- Then we don't need to explicitly enumerate $\Phi\left(\mathbf{x}_{t}\right)$'s but instead, compute $k\left(\mathbf{x}_{t}, \mathbf{x}_{s}\right)=\Phi\left(\mathbf{x}_{t}\right)^{\top} \Phi\left(\mathbf{x}_{s}\right)$ (even if Φ maps to infinite dimensional space)
- Example: RBF kernel $k\left(\mathbf{x}_{t}, \mathbf{x}_{s}\right)=\exp \left(-\sigma\left\|\mathbf{x}_{t}-\mathbf{x}_{s}\right\|_{2}^{2}\right)$, polynomial kernel $k\left(\mathbf{x}_{t}, \mathbf{x}_{s}\right)=\left(\mathbf{x}_{t}^{\top} \mathbf{y}_{t}\right)^{p}$
- Kernel function measures similarity between points.

Lets Rewrite PCA

- $k^{\text {th }}$ column of W is eigenvector of covariance matrix That is, $\lambda_{k} W_{k}=\Sigma W_{k}$. Rewriting, for centered X

$$
\lambda_{k} W_{k}=\frac{1}{n}\left(\sum_{t=1}^{n} \mathbf{x}_{t} \mathbf{x}_{t}^{\top}\right) W_{k}=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{x}_{t}^{\top} W_{k}\right) \mathbf{x}_{t}
$$

$W_{k}{ }^{\prime} \mathrm{s}$ can be written as linear combination of $\mathbf{x}_{t}{ }^{\prime} \mathrm{s}$, as

$$
W_{k}=\sum_{t=1}^{n} \alpha_{k}[t] \mathbf{x}_{t}
$$

where $\alpha_{k}[t]=\frac{1}{\lambda_{k} n}\left(\mathbf{x}_{t}^{\top} W_{k}\right)$

Lets Rewrite PCA

- We dont want to compute W_{k} itself as it could be in feature space (which is possibly infinite dimensional)!
- However, the projections are in K dimensions and we can hope to directly compute these as:

$$
\mathbf{y}_{i}[k]=\mathbf{x}_{i}^{\top} W_{k}=\mathbf{x}_{i}^{\top}\left(\sum_{t=1}^{n} \alpha_{k}[t] \mathbf{x}_{t}\right)=\sum_{t=1}^{n} \alpha_{k}[t] \mathbf{x}_{i}^{\top} \mathbf{x}_{t}
$$

- Hence if we had $\alpha_{k}[t]$'s for all $k \in[K]$ and $t \in[n]$, we can compute projection only using inner products!

Lets Rewrite PCA

- We have that $W_{k}=\sum_{s=1}^{n} \alpha_{k}[s] \mathbf{x}_{s}$ and that $\alpha_{k}[t]=\frac{1}{\lambda_{k} n}\left(\mathbf{x}_{t}^{\top} W_{k}\right)$.
- Hence:

$$
\alpha_{k}[t]=\frac{1}{\lambda_{k} n}\left(\mathbf{x}_{t}^{\top}\left(\sum_{s=1}^{n} \alpha_{k}[s] \mathbf{x}_{s}\right)\right)=\frac{1}{\lambda_{k} n} \sum_{s=1}^{n} \alpha_{k}[s] \mathbf{x}_{t}^{\top} \mathbf{x}_{s}
$$

- Let \tilde{K} be a matrix such that $\tilde{K}_{s, t}=\mathbf{x}_{t}^{\top} \mathbf{x}_{s}$. Hence, $\alpha_{k}[t]=\frac{1}{\lambda_{k} h} \alpha_{k}^{\top} \tilde{K}_{t}$ and

$$
\alpha_{k}=\frac{1}{\lambda_{k} n} \tilde{K} \alpha_{k}
$$

where \tilde{K}_{t} is the t^{\prime} th column of \tilde{K}.

- Hence α_{k} is in the direction of eigen vector of \tilde{K}

Lets Rewrite PCA

- Further, since W_{k} is unit norm,

$$
1=\left\|W_{k}\right\|_{2}^{2}=\left(\sum_{t=1}^{n} \boldsymbol{\alpha}_{k}[t] \mathbf{x}_{t}\right)^{\top}\left(\sum_{s=1}^{n} \boldsymbol{\alpha}_{k}[s] \mathbf{x}_{s}\right)=\boldsymbol{\alpha}_{k}^{\top} \tilde{K} \boldsymbol{\alpha}_{k}=n \gamma_{k} \boldsymbol{\alpha}_{k}^{\top} \boldsymbol{\alpha}_{k}
$$

Hence $\left\|\boldsymbol{\alpha}_{k}\right\|^{2}=\frac{1}{n \gamma_{k}}$ where γ_{k} is the k^{\prime} th eigen value of matrix \tilde{K}

Can we compute \tilde{K} based only on inner products?

Rewritting PCA

- We assumed centered data, what if its not,

$$
\begin{aligned}
\tilde{K}_{s, t}= & \left.\left(\mathbf{x}_{t}-\frac{1}{n} \sum_{u=1}^{n} \mathbf{x}_{u}\right)\right)^{\top}\left(\mathbf{x}_{s}-\frac{1}{n} \sum_{u=1}^{n} \mathbf{x}_{u}\right) \\
= & \mathbf{x}_{t}^{\top} \mathbf{x}_{s}-\left(\frac{1}{n} \sum_{u=1}^{n} \mathbf{x}_{u}\right)^{\top} \mathbf{x}_{s}-\left(\frac{1}{n} \sum_{u=1}^{n} \mathbf{x}_{u}\right)^{\top} \mathbf{x}_{t} \\
& +\frac{1}{n^{2}}\left(\sum_{u=1}^{n} \mathbf{x}_{u}\right)^{\top}\left(\sum_{v=1}^{n} \mathbf{x}_{v}\right) \\
= & \mathbf{x}_{t}^{\top} \mathbf{x}_{s}-\frac{1}{n} \sum_{u=1}^{n} \mathbf{x}_{u}^{\top} \mathbf{x}_{s}-\frac{1}{n} \sum_{u=1}^{n} \mathbf{x}_{u}^{\top} \mathbf{x}_{t}+\frac{1}{n^{2}} \sum_{u=1}^{n} \sum_{v=1}^{n} \mathbf{x}_{u}^{\top} \mathbf{x}_{v}
\end{aligned}
$$

Rewriting PCA

- Equivalently, if Kern is the matrix $\left(\operatorname{Kern}_{t, s}=x_{t}^{\top} x_{s}\right)$,

$$
\tilde{K}=\operatorname{Kern}-\frac{\left(\mathbf{1}_{n \times n} \times \operatorname{Kern}\right)}{n}-\frac{\left(\operatorname{Kern} \times \mathbf{1}_{n \times n}\right)}{n}+\frac{\left(\mathbf{1}_{n \times n} \times \operatorname{Kern} \times \mathbf{1}_{n \times n}\right)}{n^{2}}
$$

- Compute $\tilde{K}=$ Kern $-\mathbf{1}$ Kern $/ n-\operatorname{Kern} \mathbf{1} / n+1$ Kern $\mathbf{1} / n^{2}$
- Compute top K eigen vectors P_{1}, \ldots, P_{K} along with eigen values $\gamma_{1}, \ldots, \gamma_{K}$ for the matrix \tilde{K}
- Rescale each P_{k} by the inverse of the square-root of corresponding eigen values ie. $\alpha_{k}=P_{k} / \sqrt{n \gamma_{k}}$
- Compute projections by setting

$$
\mathbf{y}_{i}[k]=\sum_{t=1}^{n} \boldsymbol{\alpha}_{k}[t] \tilde{K}_{t, i}
$$

or in other words $Y=\tilde{K} \times\left[\alpha_{1}, \ldots, \alpha_{K}\right]$

Kernel PCA

All we need to be able to compute, to perform PCA are $\mathbf{x}_{t}^{\top} \mathbf{x}_{s}$
Replace $\mathbf{x}_{t}^{\top} \mathbf{x}_{s}$ with $\Phi\left(\mathbf{x}_{t}\right)^{\top} \Phi\left(\mathbf{x}_{s}\right)=k\left(x_{t}, x_{s}\right)$ to perform PCA in feature space

Kernel PCA

2.
n \tilde{K}
$=\operatorname{Kern}-\frac{1}{n}(\mathbf{1} \operatorname{Kern}+\operatorname{Kern} \mathbf{1})+\frac{1}{n^{2}} \mathbf{1} \operatorname{Kern} \mathbf{1}$

Kernel PCA

$$
\begin{aligned}
& \text { 3. }\left[\mathrm{n}_{\mathrm{K}} P, \gamma\right]=\operatorname{eigs}(\tilde{K}, K) \\
& \text { 4. }{ }^{n} \alpha={ }_{K}^{n}
\end{aligned}
$$

Demo

CLUSTERING

CLUSTERING

- Grouping sets of data points s.t.
- points in same group are similar
- points in different groups are dissimilar
- A form of unsupervised classification where there are no predefined labels

CLUSTERING

- Partition data into K disjoint groups
- Compression or Quantization
- Compress n points into K representatives/groups
- Visualization or Understanding
- Taxonomy: Animals Vs plants Vs Microbes, Science Vs Math Vs Social Sciences
- Segmentation: different types of customers, students etc. Find natural groupings in data
- What this does not include: items belonging to more than one type

EXAMPLES

\therefore

What are the clusters?

EXAMPLES

0

$0{ }^{\circ}$

What are the clusters?

EXAMPLES

What are the clusters?

EXAMPLES

What are the clusters?

EXAMPLES

$\because \% \% \%$

-\&!

What are the clusters?

EXAMPLES

What are the clusters?

SOME NOTATIONS

- Kary clustering is a partition of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ into K groups
- For now assume the magical K is given to use
- Clustering given by C_{1}, \ldots, C_{K}, the partition of data points.
- Given a clustering, we shall use $c\left(\mathbf{x}_{t}\right)$ to denote the cluster identity of point \mathbf{x}_{t} according to the clustering.
- Let n_{j} denote $\left|C_{j}\right|$, clearly $\sum_{j=1}^{K} n_{j}=n$.

Can we formalize criterion/ objectives for clustering?

. Assume points are represented as vectors
. Use Euclidean distances for now
. Similar points in same cluster
. Points across clusters are dissimilar

Clustering Criterion

(1) Minimize within-cluster scatter

$$
M_{1}=\sum_{j=1}^{K} \sum_{\mathbf{x}_{s}, \mathbf{x}_{t} \in C_{j}}\left\|\mathbf{x}_{s}-\mathbf{x}_{t}\right\|_{2}^{2}
$$

(2) Maximize between-cluster scatter

$$
M_{2}=\sum_{\mathbf{x}_{s}, \mathbf{x}_{t}: c\left(\mathbf{x}_{s}\right) \neq c\left(\mathbf{x}_{t}\right)}\left\|\mathbf{x}_{s}-\mathbf{x}_{t}\right\|_{2}^{2}
$$

(3) Minimize weighted within-cluster variance: $\mathbf{r}_{j}=\frac{1}{n_{j}} \sum_{\mathbf{x} \in C_{j}} \mathbf{x}$

$$
M_{3}=\sum_{j=1}^{K} n_{j} \sum_{\mathbf{x}_{t} \in C_{j}}\left\|\mathbf{x}_{t}-\mathbf{r}_{j}\right\|_{2}^{2}
$$

(4) Maximize smallest between-cluster distance

$$
M_{4}=\min _{\mathbf{x}_{s}, \mathbf{x}_{t}: c\left(\mathbf{x}_{s}\right) \neq c\left(\mathbf{x}_{t}\right)}\left\|\mathbf{x}_{s}-\mathbf{x}_{t}\right\|_{2}^{2}
$$

(5) Minimize largest within-cluster distance

$$
M_{5}=\max _{j \in[K]} \max _{\mathbf{x}_{s}, \mathbf{x}_{t} \in C_{j}}\left\|\mathbf{x}_{s}-\mathbf{x}_{t}\right\|_{2}^{2}
$$

Clustering CRITERION

6 Minimize within-cluster average scatter

$$
M_{6}=\sum_{j=1}^{K} \frac{1}{n_{j}} \sum_{\mathbf{x}_{s}, \mathbf{x}_{t} \in C_{j}}\left\|\mathbf{x}_{s}-\mathbf{x}_{t}\right\|_{2}^{2}
$$

7 Minimize within-cluster variance: $\mathbf{r}_{j}=\frac{1}{n_{j}} \sum_{\mathbf{x} \in C_{j}} \mathbf{x}$

$$
M_{7}=\sum_{j=1}^{K} \sum_{\mathbf{x}_{t} \in C_{j}}\left\|\mathbf{x}_{t}-\mathbf{r}_{j}\right\|_{2}^{2}
$$

How different are these various criterion?

