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KERNEL TRICK

Essence of Kernel trick:
If we can write down an algorithm only in terms of �(x

t

)��(x
s

)
for data points x

t

and x

s

Then we don’t need to explicitly enumerate �(x
t

)’s but instead,
compute k(x

t

,x
s

) =�(x
t

)��(x
s

) (even if � maps to infinite
dimensional space)

Example: RBF kernel k(x
t

,x
s

) = exp(−��x
t

− x

s

�22), polynomial
kernel k(x

t

,x
s

) = �x�
t

y

t

�p
Kernel function measures similarity between points.



LETS REWRITE PCA

kth column of W is eigenvector of covariance matrix
That is, �kWk = ⌃Wk. Rewriting, for centered X

�kWk = 1
n
� n�

t=1
xtx
�
t �Wk = 1

n

n�
t=1
�
x

�
t Wk�xt

Wk’s can be written as linear combination of xt’s, as

Wk = n�
t=1

↵k[t]xt

where ↵k[t] = 1
�kn �x�t Wk�



LETS REWRITE PCA

We dont want to compute W

k

itself as it could be in feature space
(which is possibly infinite dimensional)!

However, the projections are in K dimensions and we can hope to
directly compute these as:

y

i

[k] = x

�
i

W

k

= x

�
i

� n�
t=1

↵
k

[t]x
t

� = n�
t=1

↵
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[t]x�
i

x

t

Hence if we had ↵
k

[t]’s for all k ∈ [K] and t ∈ [n], we can compute
projection only using inner products!



LETS REWRITE PCA

We have that W

k

= ∑n

s=1 ↵k

[s]x
s

and that ↵
k

[t] = 1
�

k

n

�
x

�
t

W

k

�.
Hence:
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Let K̃ be a matrix such that K̃

s,t = x

�
t

x

s

. Hence, ↵
k

[t] = 1
�

k

n

↵�
k

K̃

t

and

↵
k

= 1
�

k

n

K̃↵
k

where K̃

t

is the t’th column of K̃.
Hence ↵

k

is in the direction of eigen vector of K̃



LETS REWRITE PCA

Further, since W

k

is unit norm,

1 = �W
k

�22 = � n�
t=1

↵
k

[t]x
t

�� � n�
s=1

↵
k

[s]x
s
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k

�
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k
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k

↵
k

�↵
k

Hence �↵
k

�2 = 1
n�

k

where �
k

is the k’th eigen value of matrix K̃



Can we compute

˜K based only on inner products?



REWRITTING PCA

We assumed centered data, what if its not,
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s,t = �xt

− 1
n

n�
u=1

x

u

)�� �x
s

− 1
n

n�
u=1

x

u

�
= x

�
t

x

s

− �1
n

n�
u=1

x

u

�� x

s

− �1
n

n�
u=1

x

u

�� x

t

+ 1
n

2 �
n�

u=1
x

u

�� � n�
v=1

x

v

�
= x

�
t

x

s

− 1
n

n�
u=1

x

�
u

x

s

− 1
n

n�
u=1

x

�
u

x

t

+ 1
n

2

n�
u=1

n�
v=1

x

�
u

x

v



REWRITING PCA

Equivalently, if Kern is the matrix (Kern
t,s = x

�
t

x

s

),

K̃ = Kern − (1n×n

×Kern)
n

− (Kern × 1

n×n

)
n

+ (1n×n

×Kern × 1

n×n

)
n

2



PCA REWRITTEN

If we only need to compute projections of data points, its enough
to have access to matrix K̃ (a n × n matrix)

Compute top K eigen vectors P1, . . . ,PK

along with eigen values
�1, . . . ,�K

for the matrix K̃

Rescale each P

k

by the inverse of the square-root of corresponding
eigen values ie. ↵

k

= P

k

�√n�
k

Compute projections by setting

y

i

[k] = n�
t=1

↵
k

[t]K̃
t,i

or in other words Y = K̃ × [↵1, . . . ,↵K

]

Compute

˜K = Kern� 1 Kern/n�Kern 1/n+ 1 Kern 1/n2



KERNEL PCA

All we need to be able to compute, to perform PCA are x

�
t

x

s

Replace x

�
t

x

s

with �(x
t

)��(x
s

) = k(x
t

,x
s

) to perform PCA
in feature space



KERNEL PCA

If we want to port PCA to kernel PCA, we need to be able to write
K̃ in terms of kernel functions.
We assumed centered data, so

K̃s,t = ��(xt) − 1
n
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�(xu))�
� ��(xs) − 1
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Knowing kernel function, we can perform Kernel PCA even when
� maps to infinite dimensional space!
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KERNEL PCA
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CLUSTERING

Grouping sets of data points s.t.

points in same group are similar

points in different groups are dissimilar

A form of unsupervised classification where 
there are no predefined labels



CLUSTERING

Partition data into K disjoint groups

Compression or Quantization
Compress n points into K representatives/groups

Visualization or Understanding
Taxonomy: Animals Vs plants Vs Microbes, Science Vs Math Vs
Social Sciences
Segmentation: different types of customers, students etc. Find
natural groupings in data

What this does not include: items belonging to more than one type



EXAMPLES

What are the clusters?
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EXAMPLES

What are the clusters?



SOME NOTATIONS

Kary clustering is a partition of x1, . . . ,xn into K groups

For now assume the magical K is given to use

Clustering given by C1, . . . ,CK, the partition of data points.

Given a clustering, we shall use c(xt) to denote the cluster identity
of point xt according to the clustering.

Let nj denote �Cj�, clearly ∑K
j=1 nj = n.



Can we formalize criterion/
objectives for clustering?

. Assume points are represented as vectors 

. Use Euclidean distances for now 

. Similar points in same cluster 

. Points across clusters are dissimilar



CLUSTERING CRITERION

1 Minimize within-cluster scatter

M1 = K�
j=1
�

xs,xt∈Cj

�xs − xt�22
2 Maximize between-cluster scatter

M2 = �
xs,xt∶c(xs)≠c(xt)

�xs − xt�22
3 Minimize weighted within-cluster variance: rj = 1

nj
∑

x∈Cj x

M3 = K�
j=1

nj �
xt∈Cj

�
xt − rj�22

4 Maximize smallest between-cluster distance

M4 = min
xs,xt∶c(xs)≠c(xt) �xs − xt�22

5 Minimize largest within-cluster distance

M4 =max
j∈[K] max

xs,xt∈Cj
�xs − xt�225



CLUSTERING CRITERION

6 Minimize within-cluster average scatter

M6 = K�
j=1

1
nj
�

xs,xt∈Cj

�xs − xt�22
7 Minimize within-cluster variance: rj = 1

nj
∑

x∈Cj x

M7 = K�
j=1
�

xt∈Cj

�
xt − rj�22



How different are these 
various criterion?


