Machine Learning for Data Science (CS4786)

Lecture 7

Kernel PCA, Clustering

Course Webpage :
http://www.cs.cornell.edu/Courses/csd4786/2016fa/
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KERNEL TRICK

@ Essence of Kernel trick:

o If we can write down an algorithm only in terms of O (x;)' ©(x;)
for data points x; and x;

o Then we don’t need to explicitly enumerate @ (x;)’s but instead,
compute k(x;, xs) = O(x;) ' @(xs) (even if ® maps to infinite
dimensional space)

e Example: RBF kernel k(x;, x;) = exp(—0|x; — X H%), polynomial
kernel k(x;, xs) = (x;yt)p

@ Kernel function measures similarity between points.



LETS REWRITE PCA

o k™ column of W is eigenvector of covariance matrix
That is, Ay W) = ZWj. Rewriting, for centered X

1 [ 1
?\ka = E (Z XtXtT) Wk = E Z (X;Wk)xt
t=1 t=1

W’s can be written as linear combination of x;’s, as

where oy [t] = = (x] W)
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LETS REWRITE PCA

@ We dont want to compute Wy itself as it could be in feature space
(which is possibly infinite dimensional)!

@ However, the projections are in K dimensions and we can hope to
directly compute these as:

k] =X Wi =x] (ol = 3 onlideix
t=1 t=1

@ Hence if we had o [t]’s for all k € [K] and t € [n], we can compute
projection only using inner products!



LETS REWRITE PCA

o We have that W, = ", oy [s]xs and that o [t] = (x] Wi).

7\k7”l
@ Hence:

o [ ] e (xt(z(xk )) ?\1 zn:(xk[s]xths

kN s=1

@ Let K be a matrix such that f(s,t = x, X;. Hence, o [t] = ALkn o, K; and

1
K
X = 7\k1”l X
where K; is the t'th column of K.

o Hence oy is in the direction of eigen vector of K



LETS REWRITE PCA

@ Further, since W, is unit norm,

n T/ n
1= W3 - (Sl (2 oulshe ) - Row =y
t=1 s=1

| = L where v; is the k’th eigen value of matrix K

Hence | o v



Can we compute K based only on inner products?



REWRITTING PCA

@ We assumed centered data, what if its not,

1 n T 1 n
ol B (e 20
: 1 n T 1 n T
:xtxs—(;;xu) xs_(E;XU) X
1 n T n
(S0 (5
u=1 v=1
LT _1 L T _1 L T i & L T
= X[ Xs = = D Xy Xs = = D Xy X+ — > > XXy
nuzl u=1 n u=1o0=1



REWRITING PCA

e Equivalently, if Kern is the matrix (Kern; s = x; x;),

% - Kern — (1%, x Kern) B (Kern x 1,,x,) . (Lnxn x Kern x 1,55, )

n n n2



PCA REWRITTEN

o Compute K = Kern — 1 Kern/n — Kern 1/n + 1 Kern 1/n?

@ Compute top K eigen vectors Py, .. ., Px along with eigen values
Y1, ---, vk for the matrix K

@ Rescale each Py by the inverse of the square-root of corresponding
eigen values ie. oy = Pi/ /1Yy

e Compute projections by setting



KERNEL PCA

All we need to be able to compute, to perform PCA are x; x;

Replace x; x; with @ (x;)'®(x;) = k(x¢, x5) to perform PCA
in feature space



KERNEL PCA

1 1
= Kern — — (1 Kern + Kern 1) + —1 Kern 1
n n




KERNEL PCA
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CLUSTERING

- @Grouping sets of data points s.t.
- points in same group are similar
- points in different groups are dissimilar

- A form of unsupervised classification where
there are no predefined labels



CLUSTERING

@ Partition data into K disjoint groups

@ Compression or Quantization
o Compress n points into K representatives/groups

@ Visualization or Understanding

o Taxonomy: Animals Vs plants Vs Microbes, Science Vs Math Vs
Social Sciences

o Segmentation: different types of customers, students etc. Find
natural groupings in data

@ What this does not include: items belonging to more than one type



EXAMPLES

What are the clusters?



EXAMPLES

What are the clusters?



EXAMPLES
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EXAMPLES
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EXAMPLES

What are the clusters?



SOME NOTATIONS

@ Kary clustering is a partition of xy, . . ., x; into K groups
@ For now assume the magical K is given to use
@ Clustering given by Cq, .. ., Ck, the partition of data points.

@ Given a clustering, we shall use c(x;) to denote the cluster identity
of point x; according to the clustering.

@ Let n; denote |Cj|, clearly Z]K: 1 =1,



Can we formalize criterion/
objectives for clustering”?

. Assume points are represented as vectors
. Use Euclidean distances for now

. Similar points in same cluster

. Points across clusters are dissimilar



CLUSTERING CRITERION

O Minimize within-cluster scatter

K
M=% 3 |xs x5

j=1 xs,xteC]-

@ Maximize between-cluster scatter
My= Y Ixs—xi3

Xs,X¢:C(Xs ) #EC(X¢t)
© Minimize weighted within-cluster variance: r; = nl] D xeC; X
K
2
M=) 1 ) |x -1,
=1 xeC
O Maximize smallest between-cluster distance

My= min  |xs—x|3
XS,Xt:C(XS)#:C(Xt)

@ Minimize largest within-cluster distance

M s = max max ||xs — XtH%
je[K] xs,x:€C;



CLUSTERING CRITERION

6 Minimize within-cluster average scatter
K 1 )
M = Z — Z [xs = x5
j=1 n] xS,xteCj
/ Minimize within-cluster variance: r; = nl] D xeC; X

M7=§: ).

7=1 x€C;

2
xt_r]'Hz




How different are these
various criterion?



