Machine Learning for Data Science (CS4786) Lecture 6

Non-Linear Dimensionality Reduction

Course Webpage: http://www.cs.cornell.edu/Courses/cs4786/2016fa/

ANNOUNCEMENT

- Assignment 0 feedback available on cms.
- Assignment 1 helper code in matlab, ipython and R added, due on friday.

PICK A RANDOM W

RANDOM PROJECTION

Distances between all pairs of data-points in low dim. projection is roughly the same as their distances in the high dim. space.

WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Say K = 1. Consider any vector $\tilde{\mathbf{x}} \in \mathbb{R}^d$ and let $\tilde{\mathbf{y}} = \tilde{\mathbf{x}}^T W$. We showed that: $\mathbb{E}[|\tilde{\mathbf{y}}|^2] = \|\tilde{\mathbf{x}}\|_2^2$

$$\begin{split} K > 1 \ , \ \tilde{\mathbf{y}}[j] &= \tilde{\mathbf{x}}^\top W_j \qquad \tilde{\mathbf{y}}[i] \& \ \tilde{\mathbf{y}}[j] \text{ are independent} \\ \text{(since we divide each entry of random matrix by } \sqrt{K} \text{ in } W) \\ \mathbb{E}\left[|\tilde{\mathbf{y}}[j]|^2\right] &= \frac{1}{K} \|\tilde{\mathbf{x}}\|^2 \end{split}$$

Hence, $\mathbf{E} \| \tilde{\mathbf{y}} \|^2 = \sum_{j=1}^{K} \mathbf{E} \left[\mathbf{y}[j]^2 \right] = \sum_{j=1}^{K} \frac{1}{K} \| \tilde{\mathbf{x}} \|^2 = \| \tilde{\mathbf{x}} \|^2$

This is like taking an average of *K* independent measurements whose expectations are $\|\tilde{\mathbf{x}}\|_2^2$

For large *K*, not only true in expectation but also with high probability

For any $\epsilon > 0$, if $K \approx \log(n/\delta)/\epsilon^2$, with probability $1 - \delta$ over draw of *W*, for all pairs of data points $i, j \in \{1, ..., n\}$,

$$(1-\epsilon) \|\mathbf{y}_i - \mathbf{y}_j\|_2^2 \le \|\mathbf{x}_i - \mathbf{x}_j\|_2 \le (1+\epsilon) \|\mathbf{y}_i - \mathbf{y}_j\|_2^2$$

Lets try on Matlab ...

This is called the Johnson-Lindenstrauss lemma or JL lemma for short.

WHY IS THIS SO RIDICULOUSLY MAGICAL?

d = 1000

If we take $\epsilon = 1/4$, then taking $K \approx 185$ with probability 0.99 distances are preserved to factor 1/4

WHY IS THIS SO RIDICULOUSLY MAGICAL?

d = 10000

If we take $\epsilon = 1/4$, then taking $K \approx 185$ with probability 0.99 distances are preserved to factor 1/4

WHY IS THIS SO RIDICULOUSLY MAGICAL?

n= 1000

d = 1000000

If we take $\epsilon = 1/4$, then taking $K \approx 185$ with probability 0.99 distances are preserved to factor 1/4

Kernel PCA (non-linear projections)

LINEAR PROJECTIONS

Works when data lies in a low dimensional linear sub-space

EXAMPLE

Y

Χ

LINEAR PROJECTIONS (RIGHT CO-ORDINATES)

Demo

A FIRST CUT

• Given $\mathbf{x}_t \in \mathbb{R}^d$, the feature space vector is given by mapping

 $\Phi(\mathbf{x}_t) = (\mathbf{x}_t[1], \dots, \mathbf{x}_t[d], \mathbf{x}_t[1] \cdot \mathbf{x}_t[1], \mathbf{x}_t[1] \cdot \mathbf{x}_t[2], \dots, \mathbf{x}_t[d] \cdot \mathbf{x}_t[d], \dots)^{\top}$

- Enumerating products up to order *K* (ie. products of at most *K* coordinates) we can get degree *K* polynomials.
- However dimension blows up as d^{K}
- Is there a way to do this without enumerating Φ ?

KERNEL TRICK

- Essence of Kernel trick:
 - If we can write down an algorithm only in terms of $\Phi(\mathbf{x}_t)^{\mathsf{T}} \Phi(\mathbf{x}_s)$ for data points \mathbf{x}_t and \mathbf{x}_s
 - Then we don't need to explicitly enumerate $\Phi(\mathbf{x}_t)$'s but instead, compute $k(\mathbf{x}_t, \mathbf{x}_s) = \Phi(\mathbf{x}_t)^{\mathsf{T}} \Phi(\mathbf{x}_s)$ (even if Φ maps to infinite dimensional space)
- Example: RBF kernel $k(\mathbf{x}_t, \mathbf{x}_s) = \exp(-\sigma \|\mathbf{x}_t \mathbf{x}_s\|_2^2)$, polynomial kernel $k(\mathbf{x}_t, \mathbf{x}_s) = (\mathbf{x}_t^{\mathsf{T}} \mathbf{y}_t)^p$
- Kernel function measures similarity between points.

Lets Rewrite PCA

• k^{th} column of *W* is eigenvector of covariance matrix That is, $\lambda_k W_k = \Sigma W_k$. Rewriting, for centered *X*

$$\lambda_k W_k = \frac{1}{n} \left(\sum_{t=1}^n \mathbf{x}_t \mathbf{x}_t^{\mathsf{T}} \right) W_k = \frac{1}{n} \sum_{t=1}^n \left(\mathbf{x}_t^{\mathsf{T}} W_k \right) \mathbf{x}_t$$

 W_k 's can be written as linear combination of x_t 's, as

$$W_k = \sum_{t=1}^n \alpha_k [t] \mathbf{x}_t$$

where $\alpha_k[t] = \frac{1}{\lambda_k n} \left(\mathbf{x}_t^{\mathsf{T}} W_k \right)$

Lets Rewrite PCA

• We have that $W_k = \sum_{s=1}^n \alpha_k[s] \mathbf{x}_s$ and that $\alpha_k[t] = \frac{1}{\lambda_k n} (\mathbf{x}_t^\top W_k)$. • Hence:

$$\alpha_k[t] = \frac{1}{\lambda_k n} \left(\mathbf{x}_t^{\mathsf{T}} \left(\sum_{s=1}^n \alpha_k[s] \mathbf{x}_s \right) \right) = \frac{1}{\lambda_k n} \sum_{s=1}^n \alpha_k[s] \mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s$$

• Let \tilde{K} be a matrix such that $\tilde{K}_{s,t} = \mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s$. Hence, $\alpha_k[t] = \frac{1}{\lambda_k n} \alpha_k^{\mathsf{T}} \tilde{K}_t$ and

$$\alpha_k = \frac{1}{\lambda_k n} \tilde{K} \alpha_k$$

where \tilde{K}_t is the t'th column of \tilde{K} .

• Hence α_k is in the direction of eigen vector of \tilde{K}

Lets Rewrite PCA

• Further, since W_k is unit norm,

$$1 = \|W_k\|_2^2 = \left(\sum_{t=1}^n \boldsymbol{\alpha}_k[t] \mathbf{x}_t\right)^\top \left(\sum_{s=1}^n \boldsymbol{\alpha}_k[s] \mathbf{x}_s\right) = \boldsymbol{\alpha}_k^\top \tilde{K} \boldsymbol{\alpha}_k = n \gamma_k \boldsymbol{\alpha}_k^\top \boldsymbol{\alpha}_k$$

Hence $\|\boldsymbol{\alpha}_k\|^2 = \frac{1}{n\gamma_k}$ where γ_k is the k'th eigen value of matrix \tilde{K}

LETS REWRITE PCA

- However W_k itself is in feature space and has the same dimensionality of $\Phi(x)$ (which is possibly infinite)!
- However, the projections are in *K* dimensions and we can hope to directly compute these as:

$$\mathbf{y}_{i}[k] = \mathbf{x}_{i}^{\mathsf{T}} W_{k} = \sum_{t=1}^{n} \boldsymbol{\alpha}_{k}[t] \tilde{K}_{t,i}$$

REWRITTING PCA

• We assumed centered data, what if its not,

$$\begin{split} \tilde{K}_{s,t} &= \left(\mathbf{x}_t - \frac{1}{n} \sum_{u=1}^n \mathbf{x}_u \right) \right)^{\mathsf{T}} \left(\mathbf{x}_s - \frac{1}{n} \sum_{u=1}^n \mathbf{x}_u \right) \\ &= \mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s - \left(\frac{1}{n} \sum_{u=1}^n \mathbf{x}_u \right)^{\mathsf{T}} \mathbf{x}_s - \left(\frac{1}{n} \sum_{u=1}^n \mathbf{x}_u \right)^{\mathsf{T}} \mathbf{x}_t \\ &+ \frac{1}{n^2} \left(\sum_{u=1}^n \mathbf{x}_u \right)^{\mathsf{T}} \left(\sum_{v=1}^n \mathbf{x}_v \right) \\ &= \mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s - \frac{1}{n} \sum_{u=1}^n \mathbf{x}_u^{\mathsf{T}} \mathbf{x}_s - \frac{1}{n} \sum_{u=1}^n \mathbf{x}_u^{\mathsf{T}} \mathbf{x}_t + \frac{1}{n^2} \sum_{u=1}^n \sum_{v=1}^n \mathbf{x}_u^{\mathsf{T}} \mathbf{x}_v \end{split}$$

Rewriting PCA

• Equivalently, if Kern is the matrix (Kern_{*t*,s} = $x_t^T x_s$),

$$\tilde{K} = \operatorname{Kern} - \frac{(\mathbf{1}_{n \times n} \times \operatorname{Kern})}{n} - \frac{(\operatorname{Kern} \times \mathbf{1}_{n \times n})}{n} + \frac{(\mathbf{1}_{n \times n} \times \operatorname{Kern} \times \mathbf{1}_{n \times n})}{n^2}$$

PCA REWRITTEN

• Compute $\tilde{K} = \text{Kern} - \mathbf{1} \text{ Kern}/n - \text{Kern} \mathbf{1}/n + \mathbf{1} \text{ Kern} \mathbf{1}/n^2$

- Compute top *K* eigen vectors P_1, \ldots, P_K along with eigen values $\gamma_1, \ldots, \gamma_K$ for the matrix \tilde{K}
- Rescale each P_k by the inverse of the square-root of corresponding eigen values ie. $\alpha_k = P_k / \sqrt{n\gamma_k}$
- Compute projections by setting

$$\mathbf{y}_i[k] = \sum_{t=1}^n \boldsymbol{\alpha}_k[t] \tilde{K}_{t,i}$$

or in other words $Y = \tilde{K} \times [\alpha_1, \ldots, \alpha_K]$

KERNEL PCA

All we need to be able to compute, to perform PCA are $\mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s$

Replace $\mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s$ with $\Phi(\mathbf{x}_t)^{\mathsf{T}} \Phi(\mathbf{x}_s) = k(x_t, x_s)$ to perform PCA in feature space

KERNEL PCA

2.

$$\tilde{K} = \operatorname{Kern} - \frac{1}{n} \left(\mathbf{1} \operatorname{Kern} + \operatorname{Kern} \mathbf{1} \right) + \frac{1}{n^2} \mathbf{1} \operatorname{Kern} \mathbf{1}$$

KERNEL PCA

Demo