Machine Learning for Data Science (CS4786) Lecture 6

Non-Linear Dimensionality Reduction

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2016fa/

ANNOUNCEMENT

- Assignment 0 feedback available on cms.
- Assignment 1 helper code in matlab, ipython and R added, due on friday.

Recap

PICK A Random W

$$
Y=X \times\left[\begin{array}{ccc}
+1 & \ldots & -1 \\
-1 & \ldots & +1 \\
+1 & \ldots & -1 \\
& \cdot & \\
& \cdot & \\
+1 & \ldots & -1
\end{array}\right] d / \sqrt{K}
$$

Distances between all pairs of data-points in low dim. projection is roughly the same as their distances in the high dim. space.

Why should Random Projections even work?!

Say $K=1$. Consider any vector $\tilde{\mathbf{x}} \in \mathbb{R}^{d}$ and let $\tilde{\mathbf{y}}=\tilde{\mathbf{x}}^{\top} W$.
We showed that: $\mathbb{E}\left[|\tilde{\mathbf{y}}|^{2}\right]=\|\tilde{\mathbf{x}}\|_{2}^{2}$
$K>1, \tilde{\mathbf{y}}[j]=\tilde{\mathbf{x}}^{\top} W_{j} \quad \tilde{\mathbf{y}}[i] \& \tilde{\mathbf{y}}[j]$ are independent
(since we divide each entry of random matrix by \sqrt{K} in W)

$$
\mathbb{E}\left[|\tilde{\mathbf{y}}[j]|^{2}\right]=\frac{1}{K}\|\tilde{\mathbf{x}}\|^{2}
$$

$$
\text { Hence, } \mathbf{E}\|\tilde{\mathbf{y}}\|^{2}=\sum_{j=1}^{K} \mathbf{E}\left[\mathbf{y}[j]^{2}\right]=\sum_{j=1}^{K} \frac{1}{K}\|\tilde{\mathbf{x}}\|^{2}=\|\tilde{\mathbf{x}}\|^{2}
$$

This is like taking an average of K independent measurements whose expectations are $\|\tilde{\mathbf{x}}\|_{2}^{2}$

Why should Random Projections even work?!

For large K, not only true in expectation but also with high probability
For any $\epsilon>0$, if $K \approx \log (n / \delta) / \epsilon^{2}$, with probability $1-\delta$ over draw of W, for all pairs of data points $i, j \in\{1, \ldots, n\}$,

$$
(1-\epsilon)\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|_{2}^{2} \leq\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|_{2}^{\mathbf{2}}
$$

Lets try on Matlab ...

This is called the Johnson-Lindenstrauss lemma or JL lemma for short.

WHY is THis so Ridiculously Magical?

n= 1000

$$
d=1000
$$

If we take $\epsilon=1 / 4$, then taking $K \approx 185$ with probability 0.99 distances are preserved to factor $1 / 4$

WHY is THis so Ridiculously Magical?

$$
\begin{gathered}
\mathrm{n}= \\
1000
\end{gathered}
$$

$$
d=10000
$$

If we take $\epsilon=1 / 4$, then taking $K \approx 185$ with probability
0.99 distances are preserved to factor $1 / 4$

WHY is THis so Ridiculously Magical?

$$
\begin{gathered}
n= \\
1000
\end{gathered}
$$

$$
d=1000000
$$

If we take $\epsilon=1 / 4$, then taking $K \approx 185$ with probability
0.99 distances are preserved to factor $1 / 4$

Kernel PCA

 (non-linear projections)
Linear Projections

Works when data lies in a low dimensional linear sub-space

EXAMPLE

Demo

A First Cut

- Given $\mathbf{x}_{t} \in \mathbb{R}^{d}$, the feature space vector is given by mapping

$$
\Phi\left(\mathbf{x}_{t}\right)=\left(\mathbf{x}_{t}[1], \ldots, \mathbf{x}_{t}[d], \mathbf{x}_{t}[1] \cdot \mathbf{x}_{t}[1], \mathbf{x}_{t}[1] \cdot \mathbf{x}_{t}[2], \ldots, \mathbf{x}_{t}[d] \cdot \mathbf{x}_{t}[d], \ldots\right)^{\top}
$$

- Enumerating products up to order K (ie. products of at most K coordinates) we can get degree K polynomials.
- However dimension blows up as d^{K}
- Is there a way to do this without enumerating Φ ?

Kernel Trick

- Essence of Kernel trick:
- If we can write down an algorithm only in terms of $\Phi\left(\mathbf{x}_{t}\right)^{\top} \Phi\left(\mathbf{x}_{s}\right)$ for data points \mathbf{x}_{t} and \mathbf{x}_{s}
- Then we don't need to explicitly enumerate $\Phi\left(\mathbf{x}_{t}\right)$'s but instead, compute $k\left(\mathbf{x}_{t}, \mathbf{x}_{s}\right)=\Phi\left(\mathbf{x}_{t}\right)^{\top} \Phi\left(\mathbf{x}_{s}\right)$ (even if Φ maps to infinite dimensional space)
- Example: RBF kernel $k\left(\mathbf{x}_{t}, \mathbf{x}_{s}\right)=\exp \left(-\sigma\left\|\mathbf{x}_{t}-\mathbf{x}_{s}\right\|_{2}^{2}\right)$, polynomial kernel $k\left(\mathbf{x}_{t}, \mathbf{x}_{s}\right)=\left(\mathbf{x}_{t}^{\top} \mathbf{y}_{t}\right)^{p}$
- Kernel function measures similarity between points.

Lets Rewrite PCA

- $k^{\text {th }}$ column of W is eigenvector of covariance matrix That is, $\lambda_{k} W_{k}=\Sigma W_{k}$. Rewriting, for centered X

$$
\lambda_{k} W_{k}=\frac{1}{n}\left(\sum_{t=1}^{n} \mathbf{x}_{t} \mathbf{x}_{t}^{\top}\right) W_{k}=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{x}_{t}^{\top} W_{k}\right) \mathbf{x}_{t}
$$

$W_{k}{ }^{\prime} \mathrm{s}$ can be written as linear combination of $\mathbf{x}_{t}{ }^{\prime} \mathrm{s}$, as

$$
W_{k}=\sum_{t=1}^{n} \alpha_{k}[t] \mathbf{x}_{t}
$$

where $\alpha_{k}[t]=\frac{1}{\lambda_{k} n}\left(\mathbf{x}_{t}^{\top} W_{k}\right)$

Lets Rewrite PCA

- We have that $W_{k}=\sum_{s=1}^{n} \alpha_{k}[s] \mathbf{x}_{s}$ and that $\alpha_{k}[t]=\frac{1}{\lambda_{k} n}\left(\mathbf{x}_{t}^{\top} W_{k}\right)$.
- Hence:

$$
\alpha_{k}[t]=\frac{1}{\lambda_{k} n}\left(\mathbf{x}_{t}^{\top}\left(\sum_{s=1}^{n} \alpha_{k}[s] \mathbf{x}_{s}\right)\right)=\frac{1}{\lambda_{k} n} \sum_{s=1}^{n} \alpha_{k}[s] \mathbf{x}_{t}^{\top} \mathbf{x}_{s}
$$

- Let \tilde{K} be a matrix such that $\tilde{K}_{s, t}=\mathbf{x}_{t}^{\top} \mathbf{x}_{s}$. Hence, $\alpha_{k}[t]=\frac{1}{\lambda_{k} h} \alpha_{k}^{\top} \tilde{K}_{t}$ and

$$
\alpha_{k}=\frac{1}{\lambda_{k} n} \tilde{K} \alpha_{k}
$$

where \tilde{K}_{t} is the t^{\prime} th column of \tilde{K}.

- Hence α_{k} is in the direction of eigen vector of \tilde{K}

Lets Rewrite PCA

- Further, since W_{k} is unit norm,

$$
1=\left\|W_{k}\right\|_{2}^{2}=\left(\sum_{t=1}^{n} \boldsymbol{\alpha}_{k}[t] \mathbf{x}_{t}\right)^{\top}\left(\sum_{s=1}^{n} \boldsymbol{\alpha}_{k}[s] \mathbf{x}_{s}\right)=\boldsymbol{\alpha}_{k}^{\top} \tilde{K} \boldsymbol{\alpha}_{k}=n \gamma_{k} \boldsymbol{\alpha}_{k}^{\top} \boldsymbol{\alpha}_{k}
$$

Hence $\left\|\boldsymbol{\alpha}_{k}\right\|^{2}=\frac{1}{n \gamma_{k}}$ where γ_{k} is the k^{\prime} th eigen value of matrix \tilde{K}

Lets Rewrite PCA

- However W_{k} itself is in feature space and has the same dimensionality of $\Phi(x)$ (which is possibly infinite)!
- However, the projections are in K dimensions and we can hope to directly compute these as:

$$
\mathbf{y}_{i}[k]=\mathbf{x}_{i}^{\top} W_{k}=\sum_{t=1}^{n} \boldsymbol{\alpha}_{k}[t] \tilde{K}_{t, i}
$$

Rewritting PCA

- We assumed centered data, what if its not,

$$
\begin{aligned}
\tilde{K}_{s, t}= & \left.\left(\mathbf{x}_{t}-\frac{1}{n} \sum_{u=1}^{n} \mathbf{x}_{u}\right)\right)^{\top}\left(\mathbf{x}_{s}-\frac{1}{n} \sum_{u=1}^{n} \mathbf{x}_{u}\right) \\
= & \mathbf{x}_{t}^{\top} \mathbf{x}_{s}-\left(\frac{1}{n} \sum_{u=1}^{n} \mathbf{x}_{u}\right)^{\top} \mathbf{x}_{s}-\left(\frac{1}{n} \sum_{u=1}^{n} \mathbf{x}_{u}\right)^{\top} \mathbf{x}_{t} \\
& +\frac{1}{n^{2}}\left(\sum_{u=1}^{n} \mathbf{x}_{u}\right)^{\top}\left(\sum_{v=1}^{n} \mathbf{x}_{v}\right) \\
= & \mathbf{x}_{t}^{\top} \mathbf{x}_{s}-\frac{1}{n} \sum_{u=1}^{n} \mathbf{x}_{u}^{\top} \mathbf{x}_{s}-\frac{1}{n} \sum_{u=1}^{n} \mathbf{x}_{u}^{\top} \mathbf{x}_{t}+\frac{1}{n^{2}} \sum_{u=1}^{n} \sum_{v=1}^{n} \mathbf{x}_{u}^{\top} \mathbf{x}_{v}
\end{aligned}
$$

Rewriting PCA

- Equivalently, if Kern is the matrix $\left(\operatorname{Kern}_{t, s}=x_{t}^{\top} x_{s}\right)$,

$$
\tilde{K}=\operatorname{Kern}-\frac{\left(\mathbf{1}_{n \times n} \times \operatorname{Kern}\right)}{n}-\frac{\left(\operatorname{Kern} \times \mathbf{1}_{n \times n}\right)}{n}+\frac{\left(\mathbf{1}_{n \times n} \times \operatorname{Kern} \times \mathbf{1}_{n \times n}\right)}{n^{2}}
$$

- Compute $\tilde{K}=$ Kern $-\mathbf{1}$ Kern $/ n-\operatorname{Kern} \mathbf{1} / n+1$ Kern $\mathbf{1} / n^{2}$
- Compute top K eigen vectors P_{1}, \ldots, P_{K} along with eigen values $\gamma_{1}, \ldots, \gamma_{K}$ for the matrix \tilde{K}
- Rescale each P_{k} by the inverse of the square-root of corresponding eigen values ie. $\alpha_{k}=P_{k} / \sqrt{n \gamma_{k}}$
- Compute projections by setting

$$
\mathbf{y}_{i}[k]=\sum_{t=1}^{n} \boldsymbol{\alpha}_{k}[t] \tilde{K}_{t, i}
$$

or in other words $Y=\tilde{K} \times\left[\alpha_{1}, \ldots, \alpha_{K}\right]$

Kernel PCA

All we need to be able to compute, to perform PCA are $\mathbf{x}_{t}^{\top} \mathbf{x}_{s}$
Replace $\mathbf{x}_{t}^{\top} \mathbf{x}_{s}$ with $\Phi\left(\mathbf{x}_{t}\right)^{\top} \Phi\left(\mathbf{x}_{s}\right)=k\left(x_{t}, x_{s}\right)$ to perform PCA in feature space

Kernel PCA

2.
n \tilde{K}
$=\operatorname{Kern}-\frac{1}{n}(\mathbf{1} \operatorname{Kern}+\operatorname{Kern} \mathbf{1})+\frac{1}{n^{2}} \mathbf{1} \operatorname{Kern} \mathbf{1}$

Kernel PCA

$$
\begin{aligned}
& \text { 3. }\left[{ }_{\mathrm{n}} P, \gamma\right]=\operatorname{eigs}(\tilde{K}, K) \\
& \text { 4. }{ }^{n} \alpha={ }_{K}^{n} \sum_{K}^{\vdots}
\end{aligned}
$$

Demo

