
Machine Learning for Data Science (CS4786)
Lecture 6

Non-Linear Dimensionality Reduction

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2016fa/

ANNOUNCEMENT

Assignment 0 feedback available on cms.

Assignment 1 helper code in matlab, ipython and R added, due
on friday.

Recap

PICK A RANDOM W

Y = X ⇥

2

666666664

+1 . . . �1
�1 . . . +1
+1 . . . �1

·
·
·

+1 . . . �1

3

777777775

d

K

p
K

RANDOM PROJECTION

What does “it works” even mean?

Distances between all pairs of data-points in low dim. projection
is roughly the same as their distances in the high dim. space.

That is, when K is “large enough”, with “high probability”, for all
pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2

WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Say K = 1. Consider any vector x̃ ∈ Rd and let ỹ = x̃ W. Note that

ỹ

2 = ��
d�

i=1
W[i,1] ⋅ x̃[i]��

2

= d�
i=1
(W[i,1] ⋅ x̃[i])2 + 2�

i ′>i
(W[i,1] ⋅ x̃[i]) �W[i ′,1] ⋅ x̃[i ′]�

= d�
i=1

W2[i,1]x̃2[i] +�
i ′>i
�W[i,1] ⋅W[i ′,1]� ⋅ �x̃[i] ⋅ x̃[i ′]�

However W2[i,1] = 1�K = 1 when K = 1

= d�
i=1

x̃

2[i] +�
i ′>i
�W[i,1] ⋅W[i ′,1]� ⋅ �x̃[i] ⋅ x̃[i ′]�

T

WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Hence,

E��ỹ�2� = �x̃�22
If we let x̃ = xs − xt then

ỹ = x̃W = xsW − xtW = ys − yt

Hence for any s, t ∈ {1, . . . ,n},
E��ys − yt�2� = �xs − xt�22

Lets try this in Matlab . . .

(since we divide each entry of random matrix by

p
K in W)

E
⇥
|ỹ[j]|2

⇤
=

1

K
kx̃k2

Hence, Ekỹk2 =

KX

j=1

E

⇥
y[j]2

⇤
=

KX

j=1

1

K
kx̃k2 = kx̃k2

WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Setting K large is like getting K samples.
Specifically since we take W to be random signs normalized by√

K, for each j ∈ [K], for any x̃ if ỹ = x̃ W, then

E�ỹ2[j]� = �x̃�22 �K
Hence we can conclude that

E
������

K�
j=1

ỹ

2[j]������ =
K�

j=1
E�ỹ2[j]� = K�

j=1

�x̃�22
K
= �x̃�22

This is like taking an average of K independent measurements
whose expectations are �x̃�22

We showed that:

K > 1 , ỹ[j] = x̃

>Wj ỹ[i] & ỹ[j] are independent

WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

For large K, not only true in expectation but also with high probability

For any ✏ > 0, if K ≈ log (n��) �✏2, with probability 1 − � over draw of
W, for all pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2

Lets try on Matlab . . .

This is called the Johnson-Lindenstrauss lemma or JL lemma for short.

2 2

WHY IS THIS SO RIDICULOUSLY MAGICAL?

n=
1000

d = 1000

If we take ✏ = 1/4, then taking K ⇡ 185 with probability

0.99 distances are preserved to factor 1/4

WHY IS THIS SO RIDICULOUSLY MAGICAL?

n=
1000

d = 10000

If we take ✏ = 1/4, then taking K ⇡ 185 with probability

0.99 distances are preserved to factor 1/4

WHY IS THIS SO RIDICULOUSLY MAGICAL?

n=
1000

d = 1000000

If we take ✏ = 1/4, then taking K ⇡ 185 with probability

0.99 distances are preserved to factor 1/4

Kernel PCA
(non-linear projections)

LINEAR PROJECTIONS

X

d

n Yn

K

K

Wd =⇥

Works when data lies in a low dimensional linear sub-space

EXAMPLE

Y

X

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

LINEAR PROJECTIONS (RIGHT CO-ORDINATES)

Demo

A FIRST CUT

Given x

t

∈ Rd, the feature space vector is given by mapping

�(x
t

) = (x
t

[1], . . . ,x
t

[d],x
t

[1] ⋅ x
t

[1],x
t

[1] ⋅ x
t

[2], . . . ,x
t

[d] ⋅ x
t

[d], . . .)�

Enumerating products up to order K (ie. products of at most K

coordinates) we can get degree K polynomials.

However dimension blows up as d

K

Is there a way to do this without enumerating �?

KERNEL TRICK

Essence of Kernel trick:
If we can write down an algorithm only in terms of �(x

t

)��(x
s

)
for data points x

t

and x

s

Then we don’t need to explicitly enumerate �(x
t

)’s but instead,
compute k(x

t

,x
s

) =�(x
t

)��(x
s

) (even if � maps to infinite
dimensional space)

Example: RBF kernel k(x
t

,x
s

) = exp(−��x
t

− x

s

�22), polynomial
kernel k(x

t

,x
s

) = �x�
t

y

t

�p
Kernel function measures similarity between points.

LETS REWRITE PCA

kth column of W is eigenvector of covariance matrix
That is, �kWk = ⌃Wk. Rewriting, for centered X

�kWk = 1
n
� n�

t=1
xtx
�
t �Wk = 1

n

n�
t=1
�
x

�
t Wk�xt

Wk’s can be written as linear combination of xt’s, as

Wk = n�
t=1

↵k[t]xt

where ↵k[t] = 1
�kn �x�t Wk�

LETS REWRITE PCA

We have that W

k

= ∑n

s=1 ↵k

[s]x
s

and that ↵
k

[t] = 1
�

k

n

�
x

�
t

W

k

�.
Hence:

↵
k

[t] = 1
�

k

n

�x�
t

� n�
s=1

↵
k

[s]x
s

�� = 1
�

k

n

n�
s=1

↵
k

[s]x�
t

x

s

Let K̃ be a matrix such that K̃

s,t = x

�
t

x

s

. Hence, ↵
k

[t] = 1
�

k

n

↵�
k

K̃

t

and

↵
k

= 1
�

k

n

K̃↵
k

where K̃

t

is the t’th column of K̃.
Hence ↵

k

is in the direction of eigen vector of K̃

LETS REWRITE PCA

Further, since W

k

is unit norm,

1 = �W
k

�22 = � n�
t=1

↵
k

[t]x
t

�� � n�
s=1

↵
k

[s]x
s

� = ↵
k

�
K̃↵

k

= n�
k

↵
k

�↵
k

Hence �↵
k

�2 = 1
n�

k

where �
k

is the k’th eigen value of matrix K̃

LETS REWRITE PCA

However W

k

itself is in feature space and has the same
dimensionality of �(x) (which is possibly infinite)!
However, the projections are in K dimensions and we can hope to
directly compute these as:

y

i

[k] = x

�
i

W

k

= n�
t=1

↵
k

[t]K̃
t,i

REWRITTING PCA

We assumed centered data, what if its not,

K̃

s,t = �xt

− 1
n

n�
u=1

x

u

)�� �x
s

− 1
n

n�
u=1

x

u

�
= x

�
t

x

s

− �1
n

n�
u=1

x

u

�� x

s

− �1
n

n�
u=1

x

u

�� x

t

+ 1
n

2 �
n�

u=1
x

u

�� � n�
v=1

x

v

�
= x

�
t

x

s

− 1
n

n�
u=1

x

�
u

x

s

− 1
n

n�
u=1

x

�
u

x

t

+ 1
n

2

n�
u=1

n�
v=1

x

�
u

x

v

REWRITING PCA

Equivalently, if Kern is the matrix (Kern
t,s = x

�
t

x

s

),

K̃ = Kern − (1n×n

×Kern)
n

− (Kern × 1

n×n

)
n

+ (1n×n

×Kern × 1

n×n

)
n

2

PCA REWRITTEN

If we only need to compute projections of data points, its enough
to have access to matrix K̃ (a n × n matrix)

Compute top K eigen vectors P1, . . . ,PK

along with eigen values
�1, . . . ,�K

for the matrix K̃

Rescale each P

k

by the inverse of the square-root of corresponding
eigen values ie. ↵

k

= P

k

�√n�
k

Compute projections by setting

y

i

[k] = n�
t=1

↵
k

[t]K̃
t,i

or in other words Y = K̃ × [↵1, . . . ,↵K

]

Compute

˜K = Kern� 1 Kern/n�Kern 1/n+ 1 Kern 1/n2

KERNEL PCA

All we need to be able to compute, to perform PCA are x

�
t

x

s

Replace x

�
t

x

s

with �(x
t

)��(x
s

) = k(x
t

,x
s

) to perform PCA
in feature space

KERNEL PCA

If we want to port PCA to kernel PCA, we need to be able to write
K̃ in terms of kernel functions.
We assumed centered data, so

K̃s,t = ��(xt) − 1
n

n�
u=1

�(xu))�
� ��(xs) − 1

n

n�
u=1

�(xu))�
=�(xt)��(xs) − 1

n

n�
u=1

�(xu))��(xs) − 1
n

n�
u=1

�(xu))��(xt)
+ 1

n2

n�
u=1

�(xu))� � n�
v=1

�(xv))�
= k(xt,xs) − 1

n

n�
u=1

k(xu,xs) − 1
n

n�
u=1

k(xu,xt) + 1
n2

n�
u=1

n�
v=1

k(xu,xv))

Knowing kernel function, we can perform Kernel PCA even when
� maps to infinite dimensional space!

Kern =

2

666666664

k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

· · · ·
· · · ·
· · · ·

k(xn�1, x1) k(xn�1, x2) . . . k(xn�1, xn)
k(xn, x1) k(xn, x2) . . . k(xn, xn)

3

777777775

n

n

1.

K̃ = Kern� 1

n
(1 Kern + Kern 1) +

1

n2
1 Kern 1n

n

2.

KERNEL PCA

4. = . . .↵ P1p
n�1

PKp
n�K

n

K

n

K

eigs= (,K)3.

" #

, K̃P �n

K

5. Y = ⇥K̃ ↵n

K

n

K

n

n

Demo

