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WHICH DIRECTION TO PICK?
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PCA direction



WHICH DIRECTION TO PICK?

Direction has large covariance



MAXIMIZING CORRELATION COEFFICIENT

Say w1 and v1 are the directions we choose to project in views 1
and 2 respectively we want these directions to maximize,
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CANONICAL CORRELATION ANALYSIS

Hence we want to solve for projection vectors w1 and v1 that
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SOLUTION

eigs= ,K( )W1 ⌃�1
11 ⌃12⌃

�1
22 ⌃21

eigs= ,K( )W2
⌃�1

22 ⌃21⌃
�1
11 ⌃12



CCA DEMO



i can't believe how awful is this movie i was expecting it to be 
really good especially with the actors that were in the cast this is 
depressing i'm so bummed that they ruined such a good plot 

bummed to see such a bad game what an awful performance 
by everyone on the team as if everyone played to loose need to 
improve hitters more but fielders were also worse today one of 
the worst performance in the history of baseball 

oh man this war movie was just too depressing for me some 
scenes were simply awful even though the plot closely follows 
the novel which i've read i was bummed at the end and had to 
secretly go cry

i will tell you what is wrong with it it is dead that's what is wrong with it i had just 
about enough of this that team is definitely deceased tired and shagged out 
after a long game you say look matey not a single soul in that lineup would to hit 
a single ball even if i put 4000-volts through them they are bleeding demised 
they are not pitching they passed on period plus pretty sure they must smell of 
awful elderberries after that game you should be depressed like me share the 
negativity please



this was so hilarious that's the best movie i've seen in a while i 
didn't know this actor before but he is so funny i was laughing 
from start to finish 

it was hilarious to see playing these kids against experts 
throughout the game they were just running here and there 
and trying to get to the ball which they couldn't even once this 
was funny for viewers but organizers should ensure that 
inexperienced teams don't play against the experienced ones 
to keep the game interesting 

dude that movie was so funny right i was laughing in like fits 
during some of the scenes i know the plot is supposed to be 
thought-provoking but i found it hilarious i really should stop 
laughing all the time but who cares right 

now what seems to be the problem he says after leaning on the 
coach's limb body after a fast pitch struck him during the game 
his face was icy serious not laughing at all unlike everyone else 
jen said 'it is the coach he is not moving at all is he dead he 
said slowly course not we answered laughing again thank god 



well that was a funny movie i enjoyed the plot with all those 
twists you never knew what was going to happen especially in 
this last scene i wasn't expecting this outcome at all haha

was it a game at all i felt as if everyone was just trying to stay warm 
by making as little move as possible laziness of fielders was 
making it appear as if they were running in 0.5x speed mode haha 
strikers made good use of pitch they got and it was an easy win

lol i can't even sit properly now i have a tummy ache because of 
all the rofling that actor's head looked like a volcano haha i swear 
it looked like it was about to erupt and his brains would spill out 
haha

fans at the game are encouraged to get out of their seats stretch 
a bit and sing take me out to the ball game  that is the closest 
baseball gets to a halftime haha 



really love that movie we saw yesterday i was really excited 
since i knew it was going to be released this week and i haven't 
been disappointed at all i especially enjoyed the acting of the 
actors they were so good 

what an awesome game it was dwight evans set the path to 
unprecedented victory when he made his very first strike on the 
pitch he alone made the whole game enjoyable excited for the 
next match 

omg i totally loved yesterday's movie we were all so excited to 
finally catch the third movie after months of scouring the fan 
pages for the plot there are mixed opinions on the acting but i 
think the actors did a brilliant job overall

80 years old and was still playing the game stuff like this 
keeps you excited motivated you know yes he did break his 
back walking to the pitch to take the strike but you know 
everyone has to expire and go to their maker at some point he 
was lucky to do it while doing something he loved i am sure 
he enjoyed every second of it we should learn to enjoy this 
game too like him and reflect that on our strikes 



Recap



DIMENSIONALITY REDUCTION

Given feature vectors x1, . . . ,xn

∈ Rd, compress the data points into
low dimensional representation y1, . . . ,yn

∈ RK where K << d

Principal Component Analysis: 
- Find directions that maximize variance (spread)
- Find directions that minimize reconstruction error



PRINCIPAL COMPONENT ANALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data × Top Keigenvectors

Reconstruction = Projection × Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.
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RECONSTRUCTION

4. Y= ⇥bX W>
+µ



TWO VIEW DIMENSIONALITY REDUCTION

Data can be split into pairs (x1,x
′
1), . . . , (xn,x ′n)where xt’s are d1

dimensional and x

′
t ’s are d2 dimensional

Goal: Compress x1, . . . ,xn into K dimensional vectors y1, . . . ,yn
(or x

′
1, . . . ,x

′
n into y

′
1, . . . ,y

′
n or both)

Retain information redundant between the two views

Eliminate “noise” specific to only one of the viewsCanonical Correlation Analysis: 
- Find directions that maximize correlations 

between the projections in the two views



CCA ALGORITHM
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CCA ALGORITHM
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BACK TO SINGLE VIEW: RECAP
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The Tall, THE FAT AND THE UGLY
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The Tall, THE FAT AND THE UGLY
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THE TALL, the Fat AND THE UGLY
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THE TALL, the Fat AND THE UGLY
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THE TALL, THE FAT AND the Ugly

d and n so large we can’t even store in memory
Only have time to be linear in size(X) = n × d

I there any hope?

X



PICK A RANDOM W
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RANDOM PROJECTION

What does “it works” even mean?

Distances between all pairs of data-points in low dim. projection
is roughly the same as their distances in the high dim. space.

That is, when K is “large enough”, with “high probability”, for all
pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Say K = 1. Consider any vector x̃ ∈ Rd and let ỹ = x̃ W. Note that
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WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Hence,
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WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Hence,

E��ỹ�2� = �x̃�22
If we let x̃ = xs − xt then

ỹ = x̃W = xsW − xtW = ys − yt

Hence for any s, t ∈ {1, . . . ,n},
E��ys − yt�2� = �xs − xt�22

Lets try this in Matlab . . .



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Setting K large is like getting K samples.
Specifically since we take W to be random signs normalized by√

K, for each j ∈ [K], for any x̃ if ỹ = x̃ W, then

E�ỹ2[j]� = �x̃�22 �K
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This is like taking an average of K independent measurements
whose expectations are �x̃�22



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

For large K, not only true in expectation but also with high probability

For any ✏ > 0, if K ≈ log (n��) �✏2, with probability 1 − � over draw of
W, for all pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2

Lets try on Matlab . . .

This is called the Johnson-Lindenstrauss lemma or JL lemma for short.
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WHY IS THIS SO RIDICULOUSLY MAGICAL?

n= 
1000

d = 1000

If we take K = 69.1/✏2, with probability

0.99 distances are preserved to accuracy ✏



WHY IS THIS SO RIDICULOUSLY MAGICAL?

n= 
1000

d = 10000

If we take K = 69.1/✏2, with probability

0.99 distances are preserved to accuracy ✏



WHY IS THIS SO RIDICULOUSLY MAGICAL?

n= 
1000

d = 1000000

If we take K = 69.1/✏2, with probability

0.99 distances are preserved to accuracy ✏


