Machine Learning for Data Science (CS4786) Lecture 4

Canonical Correlation Analysis (CCA)

Course Webpage: http://www.cs.cornell.edu/Courses/cs4786/2016fa/

Announcement

- We are grading HW0 and you will be added to cms by monday
- HW1 will be posted tonight on webpage (homework tab)
- HW1 on CCA and PCA (due in a week)

Assume points are centered. Which of the following are equal to the covariance matrix?

$$A. \quad \Sigma = \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_t^\top \mathbf{x}_t \qquad B. \quad \Sigma = \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_t \mathbf{x}_t^\top$$
$$C. \quad \Sigma = X X^\top \qquad D. \quad \Sigma = X X^\top$$

Example: Students in classroom

hennethnen

Maximize Spread

Minimize Reconstruction Error

0

PRINCIPAL COMPONENT ANALYSIS

 $W = \operatorname{eigs}(\Sigma, K)$

2.

3.

1.

RECONSTRUCTION

4.

WHEN d >> n

- If d >> n then Σ is large
- But we only need top *K* eigen vectors.
- Idea: use SVD

$$X - \mu = UDV^{\mathsf{T}} \qquad \qquad \mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}$$

V'V = I

Then note that, $\Sigma = (X - \mu)^{\top} (X - \mu) = V D^2 V$

- Hence, matrix *V* is the same as matrix *W* got from eigen decomposition of Σ , eigenvalues are diagonal elements of D^2
- Alternative algorithm:

 $[U, V] = SVD(X - \mu, K) \quad W = V$

WHEN TO USE PCA?

- When data naturally lies in a low dimensional linear subspace
- To minimize reconstruction error
- Find directions where data is maximally spread

Canonical Correlation Analysis

Age Gender Angle

Х

dreamasinem

Canonical Correlation Analysis

Sreamranne am

Age Gender Angle

TWO VIEW DIMENSIONALITY REDUCTION

• Data comes in pairs $(\mathbf{x}_1, \mathbf{x}'_1), \dots, (\mathbf{x}_n, \mathbf{x}'_n)$ where \mathbf{x}_t 's are d dimensional and \mathbf{x}'_t 's are d' dimensional

- Goal: Compress say view one into y_1, \ldots, y_n , that are *K* dimensional vectors
 - Retain information redundant between the two views
 - Eliminate "noise" specific to only one of the views

EXAMPLE I: SPEECH RECOGNITION

- Audio might have background sounds uncorrelated with video
- Video might have lighting changes uncorrelated with audio
- Redundant information between two views: the speech

EXAMPLE II: COMBINING FEATURE EXTRACTIONS

- Method A and Method B are both equally good feature extraction techniques
- Concatenating the two features blindly yields large dimensional feature vector with redundancy
- Applying techniques like CCA extracts the key information between the two methods
- Removes extra unwanted information

How do we get the right direction? (say K = 1)

dressmas mesm

WHICH DIRECTION TO PICK?

WHICH DIRECTION TO PICK?

WHICH DIRECTION TO PICK?

How do we pick the right direction to project to?

• Say **w**₁ and **v**₁ are the directions we choose to project in views 1 and 2 respectively we want these directions to maximize,

$$\frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}[1] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1] \right) \cdot \left(\mathbf{y}_{t}'[1] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}'[1] \right)$$

where $\mathbf{y}_t[1] = \mathbf{w}_1^{\mathsf{T}} \mathbf{x}_t$ and $\mathbf{y}_t'[1] = \mathbf{v}_1^{\mathsf{T}} \mathbf{x}_t'$

 Say w₁ and v₁ are the directions we choose to project in views 1 and 2 respectively we want these directions to maximize,

$$\frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}[1] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1] \right) \cdot \left(\mathbf{y}_{t}'[1] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}'[1] \right)$$

s.t. $\frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}[1] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1] \right)^{2} = \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}'[1] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}'[1] \right) = 1$
where $\mathbf{y}_{t}[1] = \mathbf{w}_{1}^{\mathsf{T}} \mathbf{x}_{t}$ and $\mathbf{y}_{t}'[1] = \mathbf{v}_{1}^{\mathsf{T}} \mathbf{x}_{t}'$

What is the problem with the above?

Why not Maximize Covariance

Scaling up this coordinate we can blow up covariance

MAXIMIZING CORRELATION COEFFICIENT

 Say w₁ and v₁ are the directions we choose to project in views 1 and 2 respectively we want these directions to maximize,

$$\frac{\frac{1}{n}\sum_{t=1}^{n}\left(\mathbf{y}_{t}[1] - \frac{1}{n}\sum_{t=1}^{n}\mathbf{y}_{t}[1]\right) \cdot \left(\mathbf{y}_{t}'[1] - \frac{1}{n}\sum_{t=1}^{n}\mathbf{y}_{t}'[1]\right)}{\sqrt{\frac{1}{n}\sum_{t=1}^{n}\left(\mathbf{y}_{t}[1] - \frac{1}{n}\sum_{t=1}^{n}\mathbf{y}_{t}[1]\right)^{2}}\sqrt{\frac{1}{n}\sum_{t=1}^{n}\left(\mathbf{y}_{t}'[1] - \frac{1}{n}\sum_{t=1}^{n}\mathbf{y}_{t}'[1]\right)}}$$

BASIC IDEA OF CCA

- Normalize variance in chosen direction to be constant (say 1)
- Then maximize covariance
- This is same as maximizing "correlation coefficient"

• Covariance $(A, B) = \mathbb{E}[(A - \mathbb{E}[A]) \cdot (B - \mathbb{E}[B])]$

Depends on the scale of *A* and *B*. If *B* is rescaled, covariance shifts.

• Corelation(A, B) = $\frac{\mathbb{E}[(A - \mathbb{E}[A]) \cdot (B - \mathbb{E}[B])]}{\sqrt{\operatorname{Var}(A)}\sqrt{\operatorname{Var}(B)}}$

Scale free.

 Say w₁ and v₁ are the directions we choose to project in views 1 and 2 respectively we want these directions to maximize,

$$\frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}[1] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1] \right) \cdot \left(\mathbf{y}_{t}'[1] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}'[1] \right)$$

s.t. $\frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}[1] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1] \right)^{2} = \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}'[1] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}'[1] \right) = 1$
where $\mathbf{y}_{t}[1] = \mathbf{w}_{1}^{\mathsf{T}} \mathbf{x}_{t}$ and $\mathbf{y}_{t}'[1] = \mathbf{v}_{1}^{\mathsf{T}} \mathbf{x}_{t}'$

CANONICAL CORRELATION ANALYSIS

• Hence we want to solve for projection vectors \mathbf{w}_1 and \mathbf{v}_1 that

maximize
$$\frac{1}{n} \sum_{t=1}^{n} \mathbf{w}_{1}^{\mathsf{T}}(\mathbf{x}_{t} - \boldsymbol{\mu}) \cdot \mathbf{v}_{1}^{\mathsf{T}}(\mathbf{x}_{t}' - \boldsymbol{\mu}')$$

subject to $\frac{1}{n} \sum_{t=1}^{n} (\mathbf{w}_{1}^{\mathsf{T}}(\mathbf{x}_{t} - \boldsymbol{\mu}))^{2} = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{v}_{1}^{\mathsf{T}}(\mathbf{x}_{t}' - \boldsymbol{\mu}'))^{2} = 1$

where
$$\mu = \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_t$$
 and $\mu' = \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}'_t$

CANONICAL CORRELATION ANALYSIS

• Hence we want to solve for projection vectors \mathbf{w}_1 and \mathbf{v}_1 that

maximize
$$\frac{1}{n} \sum_{t=1}^{n} \mathbf{w}_{1}^{\mathsf{T}}(\mathbf{x}_{t} - \boldsymbol{\mu}) \cdot \mathbf{v}_{1}^{\mathsf{T}}(\mathbf{x}_{t}' - \boldsymbol{\mu}')$$

subject to $\frac{1}{n} \sum_{t=1}^{n} (\mathbf{w}_{1}^{\mathsf{T}}(\mathbf{x}_{t} - \boldsymbol{\mu}))^{2} = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{v}_{1}^{\mathsf{T}}(\mathbf{x}_{t}' - \boldsymbol{\mu}'))^{2} = 1$

where
$$\mu = \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_t$$
 and $\mu' = \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}'_t$

CANONICAL CORRELATION ANALYSIS

• Hence we want to solve for projection vectors \mathbf{w}_1 and \mathbf{v}_1 that

maximize $\mathbf{w}_1^{\mathsf{T}} \Sigma_{1,2} \mathbf{v}_1$ subject to $\mathbf{w}_1^{\mathsf{T}} \Sigma_{1,1} \mathbf{w}_1 = \mathbf{v}_1^{\mathsf{T}} \Sigma_{2,2} \mathbf{v}_1 = 1$

SOLUTION

CCA ALGORITHM

