
Machine Learning for Data Science (CS4786)
Lecture 4

Canonical Correlation Analysis (CCA)

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2016fa/



Announcement

• We are grading HW0 and you will be added to cms 
by monday 

• HW1 will be posted tonight on webpage 
(homework tab) 

• HW1 on CCA and PCA (due in a week)
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Assume points are centered. Which of the following are equal 
to the covariance matrix?
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Example:  
Students in classroom
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Maximize Spread Minimize Reconstruction 
Error



PRINCIPAL COMPONENT ANALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data × Top Keigenvectors

Reconstruction = Projection × Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.
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3. Y = W⇥X�µ



RECONSTRUCTION
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WHEN d >> n

If d >> n then ⌃ is large
But we only need top K eigen vectors.
Idea: use SVD

X − µ = UDV

�
Then note that, ⌃ = (X − µ)�(X − µ) = VD

2
V

Hence, matrix V is the same as matrix W got from eigen
decomposition of ⌃, eigenvalues are diagonal elements of D

2

Alternative algorithm:

[U,V] = SVD(X − µ,K) W = V

U U   =  IT
V V   =  IT



WHEN TO USE PCA?

When data naturally lies in a low dimensional linear subspace

To minimize reconstruction error

Find directions where data is maximally spread



Canonical Correlation 
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TWO VIEW DIMENSIONALITY REDUCTION

Data comes in pairs (x1,x
′
1), . . . , (xn,x ′n)where xt’s are d

dimensional and x

′
t ’s are d ′ dimensional

Goal: Compress say view one into y1, . . . ,yn, that are K
dimensional vectors

Retain information redundant between the two views

Eliminate “noise” specific to only one of the views



EXAMPLE I: SPEECH RECOGNITION

Audio might have background sounds uncorrelated with video

Video might have lighting changes uncorrelated with audio

Redundant information between two views: the speech

+



EXAMPLE II: COMBINING FEATURE EXTRACTIONS

Method A and Method B are both equally good feature extraction
techniques

Concatenating the two features blindly yields large dimensional
feature vector with redundancy

Applying techniques like CCA extracts the key information
between the two methods

Removes extra unwanted information



How do we get the right 
direction? (say K = 1) 
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WHICH DIRECTION TO PICK?

View I View II



WHICH DIRECTION TO PICK?

0 0

PCA direction



WHICH DIRECTION TO PICK?

Direction has large covariance



How do we pick the right direction to project to?



MAXIMIZING CORRELATION COEFFICIENT

Say w1 and v1 are the directions we choose to project in views 1
and 2 respectively we want these directions to maximize,
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What is the problem 
with the above?



WHY NOT MAXIMIZE COVARIANCE

Relevant  information

Say
1

n

nX

t=1

xt[2] · x0
t[2] > 0

Scaling up this coordinate we can blow up covariance



MAXIMIZING CORRELATION COEFFICIENT

Say w1 and v1 are the directions we choose to project in views 1
and 2 respectively we want these directions to maximize,
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BASIC IDEA OF CCA

Normalize variance in chosen direction to be constant (say 1)

Then maximize covariance

This is same as maximizing “correlation coefficient” (recall from
last class).



COVARIANCE VS CORRELATION

Covariance(A,B) = E[(A −E[A]) ⋅ (B −E[B])]
Depends on the scale of A and B. If B is rescaled, covariance shifts.

Corelation(A,B) = E[(A−E[A])⋅(B−E[B])]�
Var(A)�Var(B)

Scale free.



MAXIMIZING CORRELATION COEFFICIENT

Say w1 and v1 are the directions we choose to project in views 1
and 2 respectively we want these directions to maximize,
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CANONICAL CORRELATION ANALYSIS

Hence we want to solve for projection vectors w1 and v1 that
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CANONICAL CORRELATION ANALYSIS

Hence we want to solve for projection vectors w1 and v1 that

maximize w
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SOLUTION
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CCA ALGORITHM

Write x̃t = � xt
x

′
t
� the d + d ′ dimensional concatenated vectors.

Calculate covariance matrix of the joint data points

⌃ = � ⌃1,1 ⌃1,2
⌃2,1 ⌃2,2

�

Calculate ⌃−1
1,1⌃1,2⌃

−1
2,2⌃2,1. The top K eigen vectors of this matrix

give us projection matrix for view I.

Calculate ⌃−1
2,2⌃2,1⌃

−1
1,1⌃1,2. The top K eigen vectors of this matrix

give us projection matrix for view II.

,

n

d1 d2

X = X1 X2

 !

1.

⌃ =cov X
 !

2.
⌃

⌃⌃
⌃11

21

12

22
=

eigs= ,K( )3. W1 ⌃�1
11 ⌃12⌃

�1
22 ⌃21

4. Y = W⇥X�µ
11 1 1


