Machine Learning for Data Science (CS4786) Lecture 4

Canonical Correlation Analysis (CCA)

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2016fa/

Announcement

- We are grading HWO and you will be added to cms by monday
- HW1 will be posted tonight on webpage (homework tab)
- HW1 on CCA and PCA (due in a week)

Quiz

Assume points are centered. Which of the following are equal to the covariance matrix?

$$
\begin{array}{ll}
\text { A. } \Sigma=\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}^{\top} \mathbf{x}_{t} & \text { B. } \Sigma=\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t} \mathbf{x}_{t}^{\top} \\
\text { C. } \Sigma=X X^{\top} & \text { D. } \Sigma=X X^{\top}
\end{array}
$$

Example:
 Students in classroom

Maximize Spread

Minimize Reconstruction
 Error

PRINCIPAL COMPONENT ANALYsIS

RECONSTRUCTION

$\hat{x}=\gamma \times \underline{w n}$

WHEN $d \gg n$

- If $d \gg n$ then Σ is large
- But we only need top K eigen vectors.
- Idea: use SVD

$$
X-\mu=U D V^{\top}
$$

$$
\begin{aligned}
& \mathrm{V}^{\top} \mathrm{V}=\mathrm{I} \\
& \mathrm{U}^{\top} \mathrm{U}=\mathrm{I}
\end{aligned}
$$

Then note that, $\Sigma=(X-\mu)^{\top}(X-\mu)=V D^{2} V$

- Hence, matrix V is the same as matrix W got from eigen decomposition of Σ, eigenvalues are diagonal elements of D^{2}
- Alternative algorithm:

$$
[U, V]=\operatorname{SVD}(X-\mu, K) \quad W=V
$$

When to use PCA?

- When data naturally lies in a low dimensional linear subspace
- To minimize reconstruction error
- Find directions where data is maximally spread

Canonical Correlation Analysis

Canonical Correlation Analysis

Two View Dimensionality Reduction

- Data comes in pairs $\left(\mathbf{x}_{1}, \mathbf{x}_{1}^{\prime}\right), \ldots,\left(\mathbf{x}_{n}, \mathbf{x}_{n}^{\prime}\right)$ where \mathbf{x}_{t}^{\prime} s are d dimensional and $x_{t}^{\prime \prime}$ s are d^{\prime} dimensional
- Goal: Compress say view one into $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$, that are K dimensional vectors
- Retain information redundant between the two views
- Eliminate "noise" specific to only one of the views

EXample I: Speech Recognition

- Audio might have background sounds uncorrelated with video
- Video might have lighting changes uncorrelated with audio
- Redundant information between two views: the speech

Example II: Combining Feature Extractions

- Method A and Method B are both equally good feature extraction techniques
- Concatenating the two features blindly yields large dimensional feature vector with redundancy
- Applying techniques like CCA extracts the key information between the two methods
- Removes extra unwanted information

How do we get the right direction? (say $K=1$)

Age

+ Gender
Angle

Which Direction to Рick?

-

View I

View II

Which Direction to Рick?

PCA direction

Direction has large covariance

How do we pick the right direction to project to?

Maximizing Correlation Coefficient

- Say \mathbf{w}_{1} and \mathbf{v}_{1} are the directions we choose to project in views 1 and 2 respectively we want these directions to maximize,

$$
\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1]\right) \cdot\left(\mathbf{y}_{t}^{\prime}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}^{\prime}[1]\right)
$$

where $\mathbf{y}_{t}[1]=\mathbf{w}_{1}^{\top} \mathbf{x}_{t}$ and $\mathbf{y}_{t}^{\prime}[1]=\mathbf{v}_{1}^{\top} \mathbf{x}_{t}^{\prime}$

Maximizing Correlation Coefficient

- Say \mathbf{w}_{1} and \mathbf{v}_{1} are the directions we choose to project in views 1 and 2 respectively we want these directions to maximize,

$$
\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1]\right) \cdot\left(\mathbf{y}_{t}^{\prime}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}^{\prime}[1]\right)
$$

s.t. $\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1]\right)^{2}=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}^{\prime}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}^{\prime}[1]\right)=1$
where $\mathbf{y}_{t}[1]=\mathbf{w}_{1}^{\top} \mathbf{x}_{t}$ and $\mathbf{y}_{t}^{\prime}[1]=\mathbf{v}_{1}^{\top} \mathbf{x}_{t}^{\prime}$

What is the problem with the above?

Why not Maximize Covariance

Relevant information

$$
\text { Say } \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}[2] \cdot \mathbf{x}_{t}^{\prime}[2]>0
$$

Scaling up this coordinate we can blow up covariance

Maximizing Correlation Coefficient

- Say \mathbf{w}_{1} and \mathbf{v}_{1} are the directions we choose to project in views 1 and 2 respectively we want these directions to maximize,

$$
\frac{\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1]\right) \cdot\left(\mathbf{y}_{t}^{\prime}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}^{\prime}[1]\right)}{\sqrt{\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1]\right)^{2}} \sqrt{\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}^{\prime}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}^{\prime}[1]\right)}}
$$

BASIC IDEA OF CCA

- Normalize variance in chosen direction to be constant (say 1)
- Then maximize covariance
- This is same as maximizing "correlation coefficient"

Covariance Vs Correlation

- Covariance $(A, B)=\mathbb{E}[(A-\mathbb{E}[A]) \cdot(B-\mathbb{E}[B])]$

Depends on the scale of A and B. If B is rescaled, covariance shifts.

- Corelation $(A, B)=\frac{\mathbb{E}[(A-\mathbb{E}[A]) \cdot(B-\mathbb{E}[B])]}{\sqrt{\operatorname{Var}(A)} \sqrt{\operatorname{Var}(B)}}$

Scale free.

Maximizing Correlation Coefficient

- Say \mathbf{w}_{1} and \mathbf{v}_{1} are the directions we choose to project in views 1 and 2 respectively we want these directions to maximize,

$$
\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1]\right) \cdot\left(\mathbf{y}_{t}^{\prime}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}^{\prime}[1]\right)
$$

s.t. $\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1]\right)^{2}=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}^{\prime}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}^{\prime}[1]\right)=1$
where $\mathbf{y}_{t}[1]=\mathbf{w}_{1}^{\top} \mathbf{x}_{t}$ and $\mathbf{y}_{t}^{\prime}[1]=\mathbf{v}_{1}^{\top} \mathbf{x}_{t}^{\prime}$

Canonical Correlation Analysis

- Hence we want to solve for projection vectors \mathbf{w}_{1} and \mathbf{v}_{1} that

$$
\begin{aligned}
& \operatorname{maximize} \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}_{1}^{\top}\left(\mathbf{x}_{t}-\mu\right) \cdot \mathbf{v}_{1}^{\top}\left(\mathbf{x}_{t}^{\prime}-\mu^{\prime}\right) \\
& \text { subject to } \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}_{1}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right)^{2}=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{v}_{1}^{\top}\left(\mathbf{x}_{t}^{\prime}-\mu^{\prime}\right)\right)^{2}=1
\end{aligned}
$$

where $\mu=\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}$ and $\mu^{\prime}=\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}^{\prime}$

Canonical Correlation Analysis

- Hence we want to solve for projection vectors \mathbf{w}_{1} and \mathbf{v}_{1} that

$$
\begin{aligned}
& \operatorname{maximize} \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}_{1}^{\top}\left(\mathbf{x}_{t}-\mu\right) \cdot \mathbf{v}_{1}^{\top}\left(\mathbf{x}_{t}^{\prime}-\mu^{\prime}\right) \\
& \text { subject to } \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}_{1}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right)^{2}=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{v}_{1}^{\top}\left(\mathbf{x}_{t}^{\prime}-\mu^{\prime}\right)\right)^{2}=1
\end{aligned}
$$

where $\mu=\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}$ and $\mu^{\prime}=\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}^{\prime}$

Canonical Correlation Analysis

- Hence we want to solve for projection vectors \mathbf{w}_{1} and \mathbf{v}_{1} that

$$
\begin{aligned}
& \operatorname{maximize} \mathbf{w}_{1}^{\top} \Sigma_{1,2} \mathbf{v}_{1} \\
& \text { subject to } \mathbf{w}_{1}^{\top} \Sigma_{1,1} \mathbf{w}_{1}=\mathbf{v}_{1}^{\top} \Sigma_{2,2} \mathbf{v}_{1}=1
\end{aligned}
$$

SOLUTION

CCA AlgORITHM

$$
\begin{aligned}
& \text { 1. } X=\left(\begin{array}{lll}
0 & X_{1} & X_{2} \\
\mathrm{~d}_{\mathrm{d}} & \mathrm{~d}_{\mathrm{d}}
\end{array}\right) \\
& \text { 2. } \sum=\sum_{\sum=1}^{\sum} \sum_{n=0}=\operatorname{cov}(\quad X)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. } Y_{1}=X_{1}-\mu \times W_{1}
\end{aligned}
$$

