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REPRESENTING DATA AS FEATURE VECTORS

How do we represent data?

Each data-point often represented as vector referred to as feature
vector

Eg. text document represented by vector in which each coordinate
represents a word and value represents number of times the word
occurred in the document

Eg. Image represented as a vector where each coordinate
represents a pixel and value represents the grayscale value of that
pixel
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DIMENSIONALITY REDUCTION

Given feature vectors x1, . . . ,xn

∈ Rd, compress the data points into
low dimensional representation y1, . . . ,yn

∈ RK where K << dX
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DIMENSIONALITY REDUCTION

Given feature vectors x1, . . . ,xn

∈ Rd, compress the data points into
low dimensional representation y1, . . . ,yn

∈ RK where K << d



Flowers

Iris-Setosa Iris-versicolor Iris-virginica



PRINCIPAL COMPONENT ANALYSIS: DEMO



WHY DIMENSIONALITY REDUCTION?

For computational ease

As input to supervised learning algorithm

Before clustering to remove redundant information and noise

Data compression & Noise reduction

Data visualization



DIMENSIONALITY REDUCTION

Desired properties:

1 Original data can be (approximately) reconstructed

2 Preserve distances between data points

3 “Relevant” information is preserved

4 Noise is reduced



DIM REDUCTION: LINEAR TRANSFORMATION

Pick a low dimensional subspace

Project linearly to this subspace

Subspace retains as much information
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DIM REDUCTION: LINEAR TRANSFORMATION

Pick a low dimensional subspace

Project linearly to this subspace

Subspace retains as much information

Prelude: reducing to 1 dimension
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PCA: VARIANCE MAXIMIZATION

Pick directions along which data varies the most
First principal component:

w1 = arg max
w∶�w�2=1
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PCA: VARIANCE MAXIMIZATION

Pick directions along which data varies the most
First principal component:
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PCA: VARIANCE MAXIMIZATION

Covariance matrix:
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PCA: VARIANCE MAXIMIZATION

First principal component:

w1 = arg max
w∶�w�2=1

w

�⌃w

The solution to the above optimization problem is w1 is the top
Eigen vector of matrix ⌃

Hence in “matlab”,

S = Cov(X)
[W,E] = eigs(S,1)
Y =W ∗X



PRINCIPAL COMPONENT ANALYSIS: DEMO



PRINCIPAL COMPONENT ANALYSIS (K > 1)

What do we do when K > 1?



DIM REDUCTION: LINEAR TRANSFORMATION

Pick a low dimensional subspace

Project linearly to this subspace

Subspace retains as much information

Prelude: reducing to 1 dimension
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ORTHONORMAL PROJECTIONS

Think of w1, . . . ,wK

as coordinate system for PCA (in a K

dimensional subspace)

y values provide coefficients in this system

Without loss of generality, w1, . . . ,wK

can be orthonormal, i.e.
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. To reduce
dimensionality we only consider first K vectors of the basis



PCA: VARIANCE MAXIMIZATION

How do we find the K components?

We are looking for orthogonal directions that maximize total
spread in each direction

Find orthonormal W that maximizes
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This solutions is given by W = Top K eigenvectors of ⌃



PRINCIPAL COMPONENT ANALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data × Top Keigenvectors

Reconstruction = Projection × Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.

⌃ =cov X
 !

1.

eigs= ⌃ ,K( )W2.

3. Y = W⇥X



PRINCIPAL COMPONENT ANALYSIS: DEMO


