Machine Learning for Data Science (C54786)

Lecture 2

Dimensionality Reduction
&
Principal Component Analysis

Course Webpage :
http://www.cs.cornell.edu/Courses/csd4786/2016fa/



REPRESENTING DATA AS FEATURE VECTORS

@ How do we represent data?

@ Each data-point often represented as vector referred to as feature
vector



EXAMPLE: IMAGES
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EXAMPLE: TEXT (BAG OF WORDS)

Documents:

car
engine
hood
tires

truck
trunk

/

car
emissions
hood
make

model
trunk

Chomsky
corpus
noun
parsing
tagging
wonderful




DIMENSIONALITY REDUCTION
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DIMENSIONALITY REDUCTION

Given feature vectors xq, . . ., x, € R?, compress the data points into
low dimensional representation yq, . . ., y, € RX where K << d



Iris-Setosa Iris-versicolor Iris-virginica



PRINCIPAL COMPONENT ANALYSIS: DEMO



WHY DIMENSIONALITY REDUCTION?

@ For computational ease

o As input to supervised learning algorithm

o Before clustering to remove redundant information and noise
@ Data compression & Noise reduction

@ Data visualization



DIMENSIONALITY REDUCTION

Desired properties:

@ Original data can be (approximately) reconstructed
@ Preserve distances between data points
@ “Relevant” information is preserved

O Noise is reduced



DIM REDUCTION: LINEAR TRANSFORMATION

@ Pick a low dimensional subspace
@ Project linearly to this subspace

@ Subspace retains as much information



DIM REDUCTION: LINEAR TRANSFORMATION




DIM REDUCTION: LINEAR TRANSFORMATION

Prelude: reducing to 1 dimension

X1

A= W X = |x1 || cos (£/wx1)
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PCA: VARIANCE MAXIMIZATION
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PCA: VARIANCE MAXIMIZATION
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PCA: VARIANCE MAXIMIZATION

@ Pick directions along which data varies the most
@ First principal component:
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where I is the covariance matrix and p = + ¥} x;



PCA: VARIANCE MAXIMIZATION

Covariance matrix:



PCA: VARIANCE MAXIMIZATION

@ First principal component:

Wi =arg max w Iw
w:|wi,=1

@ The solution to the above optimization problem is w is the top
Eigen vector of matrix

@ Hence in “matlab”,

S =Cov(X)
[W,E] =eigs(S,1)
Y=W=xX






PRINCIPAL COMPONENT ANALYSIS (K > 1)

What do we do when K > 17



DIM REDUCTION: LINEAR TRANSFORMATION

Prelude: reducing to 1 dimension




ORTHONORMAL PROJECTIONS

@ Think of wy, ..., wg as coordinate system for PCA (ina K
dimensional subspace)

@ y values provide coetficients in this system

@ Without loss of generality, wy, .. ., wg can be orthonormal, i.e.
Wi 1l Ww; & HWZH = 1.

@ Reconstruction:

K
Xt = > yiljlw;
i1

@ If we take all wq, ..., w,, then x; = Z]‘-lzl y:[j]w;. To reduce
dimensionality we only consider first K vectors of the basis



PCA: VARIANCE MAXIMIZATION

@ How do we find the K components?

@ We are looking for orthogonal directions that maximize total
spread in each direction

@ Find orthonormal W that maximizes
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@ This solutions is given by W = Top K eigenvectors of 2



PRINCIPAL COMPONENT ANALYSIS







