Machine Learning for Data Science (CS4786) Lecture 2

Dimensionality Reduction
\&

Principal Component Analysis

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2016fa/

Representing Data as Feature Vectors

- How do we represent data?
- Each data-point often represented as vector referred to as feature vector

EXAMPLE: IMAGES

vectorize

$d=k^{2}$

EXAMPLE: TEXT (BAG OF WORDS)

Dimensionality Reduction

DIMENSIONALITY REDUCTION

Given feature vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$, compress the data points into low dimensional representation $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \in \mathbb{R}^{K}$ where $K \ll d$

Flowers

Iris-Setosa

Iris-versicolor

Iris-virginica

WHY DIMENSIONALITY REDUCTION?

- For computational ease
- As input to supervised learning algorithm
- Before clustering to remove redundant information and noise
- Data compression \& Noise reduction
- Data visualization

DIMENSIONALITY REDUCTION

Desired properties:
(1) Original data can be (approximately) reconstructed
(2) Preserve distances between data points
(3) "Relevant" information is preserved
(4) Noise is reduced

Dim Reduction: Linear Transformation

- Pick a low dimensional subspace
- Project linearly to this subspace
- Subspace retains as much information

Dim Reduction: Linear Transformation

Prelude: reducing to 1 dimension

$$
\mathbf{y}_{1}=\mathbf{w}^{\top} \mathbf{x}_{1}=\left\|\mathbf{x}_{1}\right\| \cos \left(\angle \mathbf{w} \mathbf{x}_{1}\right)
$$

PCA: VARIANCE MAXIMIZATION

PCA: VARIANCE MAXIMIZATION

PCA: VARIANCE MAXIMIZATION

PCA: VARIANCE MAXIMIZATION

- Pick directions along which data varies the most
- First principal component:

$$
\begin{aligned}
\mathbf{w}_{1} & =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}\right)^{2} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\top} \mathbf{x}_{t}\right)^{2} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\right)^{2} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\top}\left(\mathbf{x}_{t}-\mu\right)\left(\mathbf{x}_{t}-\mu\right)^{\top} \mathbf{w} \\
& =\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \mathbf{w}^{\top} \Sigma \mathbf{w}
\end{aligned}
$$

where Σ is the covariance matrix and $\mu=\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}$

PCA: VARIANCE MAXIMIZATION

Covariance matrix:

$$
\Sigma=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{x}_{t}-\mu\right)\left(\mathbf{x}_{t}-\mu\right)^{\top}
$$

- Its a $d \times d$ matrix, $\Sigma[i, j]$ measures "covariance" of features i and j

$$
\Sigma[i, j]=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{x}_{t}[i]-\mu[i]\right)\left(\mathbf{x}_{t}[j]-\mu[j]\right)
$$

PCA: VARIANCE MAXIMIZATION

- First principal component:

$$
\mathbf{w}_{1}=\arg \max _{\mathbf{w}:\|\mathbf{w}\|_{2}=1} \mathbf{w}^{\top} \Sigma \mathbf{w}
$$

- The solution to the above optimization problem is \mathbf{w}_{1} is the top Eigen vector of matrix Σ
- Hence in "matlab",

$$
\begin{aligned}
& S=\operatorname{Cov}(X) \\
& {[W, E]=\operatorname{eigs}(S, 1)} \\
& Y=W * X
\end{aligned}
$$

: : ; : $:():():()$
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
$\odot \odot \odot \odot O \odot O$

What do we do when $K>1$?

Prelude: reducing to 1 dimension

Orthonormal Projections

- Think of $\mathbf{w}_{1}, \ldots, \mathbf{w}_{K}$ as coordinate system for PCA (in a K dimensional subspace)
- \mathbf{y} values provide coefficients in this system
- Without loss of generality, $\mathbf{w}_{1}, \ldots, \mathbf{w}_{K}$ can be orthonormal, i.e. $\mathbf{w}_{i} \perp \mathbf{w}_{j} \&\left\|\mathbf{w}_{i}\right\|=1$.
- Reconstruction:

$$
\hat{\mathbf{x}}_{t}=\sum_{j=1}^{K} \mathbf{y}_{t}[j] \mathbf{w}_{j}
$$

- If we take all $\mathbf{w}_{1}, \ldots, \mathbf{w}_{d}$, then $\mathbf{x}_{t}=\sum_{j=1}^{d} \mathbf{y}_{t}[j] \mathbf{w}_{j}$. To reduce dimensionality we only consider first K vectors of the basis

PCA: VARIANCE MAXIMIZATION

- How do we find the K components?
- We are looking for orthogonal directions that maximize total spread in each direction
- Find orthonormal W that maximizes

$$
\begin{aligned}
\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[j]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[j]\right)^{2} & =\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}_{j}^{\top}\left(\mathbf{x}_{t}-\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}\right)\right)^{2} \\
& =\sum_{j=1}^{K} \mathbf{w}_{j}^{\top} \Sigma \mathbf{w}_{j}
\end{aligned}
$$

- This solutions is given by $W=$ Top K eigenvectors of Σ

PRINCIPAL COMPONENT ANALYsIS

: : ; : $:():():()$
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
$\odot \odot \odot \odot O \odot O$

