Machine Learning for Data Science (CS 4786)

Lecture 15: EM Algorithm and Mixture Models

1 EM Algorithm Recap
E-step: ‘

Qi (cr) = Plerlw, 007)
M-step:

0 = argmax Z Z Qt ct) log(P(xy, ¢t|0))
06@ t= 1Ct 1
1.1 EM for Mixture Models

For any mixture model with 7 as mixture distribution, and any arbitrary parameterization of
likelihood of data given cluster assignment, one can write down a more detailed form for EM
algorithm.

E-step On iteration i, for each data point ¢ € [n], set

1(:i)(ct) = P(cy]xy, 007Y)
Note that

QP (¢r) = Pera, 6971)
o plarfer, 0071) x P(er]6¢0)
o plarfer, 07V x Ple )
_ _ plarde, 897D) - m Ve
K p@ler, 06) - w1y

So all we need to fill out the n x K sized ) matrix is to have a current guess at m and the ability
to compute p(xy|c;, 001 up to multiplicative factor.




0 = argmax Z Z Qt k)log P(x¢, ¢t = k|0)

060 44 k=1

= argmax ZZQt Vlog P(x¢|e; = k,0) x P(c; = k|f)
00 Y1 k=1

= argmax Z Z Qt k)log (P(z¢lc, =k, 0) x w[k])

00 4 k=1

n K
—argmaxZZQt )log (Parfer = k,0)) + > > Q4 (k) log (k)

Using ©\™ to denote the set of parameters excluding 7,

K n K
= angmax (ZZ@EZ )log (Plailer = k,0)) + > > Q1 (k) log m)

0co\T,

t=1 k=1 t=1 k=1
n K n
= (argmax ( Z le)(kz) log (P(z¢|c; = k,0)) ) dlgIndX (Z Z Qt )))
6O\ t=1 k=1 t=1 k=1

Notice that the term in red is exactly the optimization we solved for in GMM example. We know
this already! The solution is:

S QY (k)

n

T =

and this is the same for any mixture model.

On the other hand, the optimization problem,

argmax (Z Z Qt k)log (P(wile = F, 9)))

ocONT  \ 4 =1

is simply a weighted version of MLE when our observation includes ¢;’s the hidden or latent vari-
ables. In the M-step, this is the only portion that changes the mixture distribution solution has
same form always.

2 Mixture of Multinomials

Each 6 € O consist of mixture distribution 7 which is a distribution over the choices of the K clusters
or types, p1,...,pKx are K distributions over the d items. The latent variables are cy,...,c, the
cluster assignments for the n points indicating that the t** data point was drawn using distribution
Des- X1, - -, Ty are the n observations.



Story: You own a grocery store and multiple customers walk in to your store and buy stuff. You
want group customers into K group based on distribution over the d products/choices in your store.
Think of customers as being independently drawn and they each belong to one of K groups. We
will first start with a simple scenario and build up to a more general one. To start with, say each
day a customer walks in to your store and buys m = 1 product. The generative story then is that
we first draw customer type ¢; ~ 7w from a mixture distribution 7, next associated with type ¢,
there is a distribution p,, over products the customer would buy. We draw z; € [d] the product the
customer bought as x; ~ p,. That is

p(l't|ct = k?,‘g) = Pc [-Tt]

Next we can move to a slightly more complex scenario where the customer on every round buys
(fixed) m > 1 products by drawing z; as m samples from the multinomial distribution. That is,

m!
(1)L my[d]

p(xtler =k, 0) = 17 py )l

where x;[j] indicates the amount of product j bought by the customer ¢.

2.1 Mixture of Multinomials (Primer m = 1)
E-step On iteration i, for each data point ¢ € [n], set
(x| e, 9(1’—1)) . F(i_l)[ct]
25:1 p(xt|ee, 0G=D) - P(c]0—1))
pli Dl - 7Vl
S p(weer, 061 - = Dey]

Q) (er) =

M-step As we already saw, we set

DY RYo0)

n

Tk

Now as for the remaining parameters, we want to maximize

n K
argmax (Z Z ng) (k) log (px [:L‘t]))

P1;--PK t=1 k=1

Define L(p1,...,pr) = Y 1 E,Ile le)(k‘) log (pr[x¢]). We want to optimize L(pi,...,pK)
w.r.t. p1,...,pr s.t. each p is a valid probability distribution over {1,...,d}. As an exam-
ple, to find the optimal pg, we want to optimize over p, subject to the constraint Z?Zl prljl =1
(ie. its a distribution), we do so by introducing Lagrange variables. That is we find pg[j]’s by
taking derivative and equating to 0 the following Lagrangian objective,

d
Llpy,...,pr) + (1= peld])
j=1



Taking derivative and equating to 0, we want to find py s.t.,

In other words, for every j € [d],

o= pr[j]
Hence we conclude that
x> Q)
tiwy=j
Hence, '
Dt O ()
mlil=—/—F—

S QY (k)

Thus for the M-step when we are dealing with the mixture model with exactly m = 1 purchase
on every round, we get that, for every k € [K| and every j € [d],

Sy QL (K)
S QY (k)

pr[j] =

2.2 Mixture of Multinomials (m > 1)

E-step On iteration i, for each data point ¢ € [n], set

@ (¢, = (i, §071) - 7= Dey]
Sohey plalk, 06G-D) - P(k|6G-1)
Pyl ]xt[l} e Dey [d]xt[d] . 1)[ct]
= Zﬁf:lpa[l]xtm e P[] - DK

M-step For mixture distribution, as usual,

T =

S Q) (k)
n

Now as for the remaining parameters, we want to maximize

argmax (Z Z Qt k)log (P(x¢|ct = k 9)))

P1,---PK t=1 k=1

K

= argmax ( ZQ 2 k)log (pk[l] 1, .pk[d]xt[d})>

P1,--PK t=1 k=1
n K d

= argmax (Z > Q1 (k) k) wilj]log (pilj ]))

PLoPK\ 4=1 =1 j=1

3



Again to solve this, define L(p1,...,px) = > 1 Zle ng)(k‘) Z?Zl x¢[j] log (pr[j]). We want
to optimize L(p1,...,px) W.r.t. p1,...,pr s.t. each pi is a valid probability distribution over
{1,...,d}. As an example, to find the optimal py, we want to optimize over p; subject to the
constraint Z?:l prlj] =1 (ie. its a distribution), we do so by introducing Lagrange variables. That
is we find pg[j]’s by taking derivative and equating to 0 the following Lagrangian objective,

d

L(p1,....,px) + (1 — Zpk[j])

Taking derivative and equating to 0, we want to find pg s.t.,
Q7 (k) Y wiljl—= M =0
S 3l

In other words, for every j € [d],

Hence we conclude that

S 9 (5 1) D vt 1 1) R W 1 (L)
S S @ Wil X QP k) (S wli])  m i @ (k)




