Machine Learning for Data Science (CS 4786)

Lecture 15: EM Algorithm and Mixture Models

1 EM Algorithm Recap

E-step:

$$
Q_{t}^{(i)}\left(c_{t}\right)=P\left(c_{t} \mid x_{t}, \theta^{(i-1)}\right)
$$

M-step:

$$
\theta^{(i)}=\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q_{t}^{(i)}\left(c_{t}\right) \log \left(P\left(x_{t}, c_{t} \mid \theta\right)\right)
$$

1.1 EM for Mixture Models

For any mixture model with π as mixture distribution, and any arbitrary parameterization of likelihood of data given cluster assignment, one can write down a more detailed form for EM algorithm.

E-step On iteration i, for each data point $t \in[n]$, set

$$
Q_{t}^{(i)}\left(c_{t}\right)=P\left(c_{t} \mid x_{t}, \theta^{(i-1)}\right)
$$

Note that

$$
\begin{aligned}
Q_{t}^{(i)}\left(c_{t}\right) & =P\left(c_{t} \mid x_{t}, \theta^{(i-1)}\right) \\
& \propto p\left(x_{t} \mid c_{t}, \theta^{(i-1)}\right) \times P\left(c_{t} \mid \theta^{(i-1)}\right) \\
& \propto p\left(x_{t} \mid c_{t}, \theta^{(i-1)}\right) \times P\left(c_{t} \mid \theta^{(i-1)}\right) \\
& =\frac{p\left(x_{t} \mid c_{t}, \theta^{(i-1)}\right) \cdot \pi^{(i-1)}\left[c_{t}\right]}{\sum_{c_{t}=1}^{K} p\left(x_{t} \mid c_{t}, \theta^{(i-1)}\right) \cdot \pi^{(i-1)}\left[c_{t}\right]}
\end{aligned}
$$

So all we need to fill out the $n \times K$ sized Q matrix is to have a current guess at π and the ability to compute $p\left(x_{t} \mid c_{t}, \theta^{(i-1)}\right)$ up to multiplicative factor.

$$
\begin{aligned}
\theta & =\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log P\left(x_{t}, c_{t}=k \mid \theta\right) \\
& =\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log P\left(x_{t} \mid c_{t}=k, \theta\right) \times P\left(c_{t}=k \mid \theta\right) \\
& =\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(P\left(x_{t} \mid c_{t}=k, \theta\right) \times \pi[k]\right) \\
& =\underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(P\left(x_{t} \mid c_{t}=k, \theta\right)\right)+\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log (\pi[k])
\end{aligned}
$$

Using $\Theta \backslash \pi$ to denote the set of parameters excluding π,

$$
\begin{aligned}
& =\underset{\theta \in \Theta \backslash \pi, \pi}{\operatorname{argmax}}\left(\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(P\left(x_{t} \mid c_{t}=k, \theta\right)\right)+\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(\pi_{k}\right)\right) \\
& =\left(\underset{\theta \in \Theta \backslash \pi}{\operatorname{argmax}}\left(\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(P\left(x_{t} \mid c_{t}=k, \theta\right)\right)\right), \underset{\pi}{\operatorname{argmax}}\left(\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(\pi_{k}\right)\right)\right)
\end{aligned}
$$

Notice that the term in red is exactly the optimization we solved for in GMM example. We know this already! The solution is:

$$
\pi_{k}=\frac{\sum_{t=1}^{n} Q_{t}^{(i)}(k)}{n}
$$

and this is the same for any mixture model.
On the other hand, the optimization problem,

$$
\underset{\theta \in \Theta \backslash \pi}{\operatorname{argmax}}\left(\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(P\left(x_{t} \mid c_{t}=k, \theta\right)\right)\right)
$$

is simply a weighted version of MLE when our observation includes c_{t} 's the hidden or latent variables. In the M-step, this is the only portion that changes the mixture distribution solution has same form always.

2 Mixture of Multinomials

Each $\theta \in \Theta$ consist of mixture distribution π which is a distribution over the choices of the K clusters or types, p_{1}, \ldots, p_{K} are K distributions over the d items. The latent variables are c_{1}, \ldots, c_{n} the cluster assignments for the n points indicating that the $t^{t h}$ data point was drawn using distribution $p_{c_{t}} . x_{1}, \ldots, x_{n}$ are the n observations.

Story: You own a grocery store and multiple customers walk in to your store and buy stuff. You want group customers into K group based on distribution over the d products/choices in your store. Think of customers as being independently drawn and they each belong to one of K groups. We will first start with a simple scenario and build up to a more general one. To start with, say each day a customer walks in to your store and buys $m=1$ product. The generative story then is that we first draw customer type $c_{t} \sim \pi$ from a mixture distribution π, next associated with type c_{t}, there is a distribution $p_{c_{t}}$ over products the customer would buy. We draw $x_{t} \in[d]$ the product the customer bought as $x_{t} \sim p_{c_{t}}$. That is

$$
p\left(x_{t} \mid c_{t}=k, \theta\right)=p_{c_{t}}\left[x_{t}\right]
$$

Next we can move to a slightly more complex scenario where the customer on every round buys (fixed) $m>1$ products by drawing x_{t} as m samples from the multinomial distribution. That is,

$$
p\left(x_{t} \mid c_{t}=k, \theta\right)=\frac{m!}{x_{t}[1]!\cdot \ldots \cdot x_{t}[d]!} p_{k}[1]^{x_{t}[1]} \ldots \ldots p_{k}[d]^{x_{t}[d]}
$$

where $x_{t}[j]$ indicates the amount of product j bought by the customer t.

2.1 Mixture of Multinomials (Primer $m=1$)

E-step On iteration i, for each data point $t \in[n]$, set

$$
\begin{aligned}
Q_{t}^{(i)}\left(c_{t}\right) & =\frac{p\left(x_{t} \mid c_{t}, \theta^{(i-1)}\right) \cdot \pi^{(i-1)}\left[c_{t}\right]}{\sum_{c_{t}=1}^{K} p\left(x_{t} \mid c_{t}, \theta^{(i-1)}\right) \cdot P\left(c_{t} \mid \theta^{(i-1)}\right)} \\
& =\frac{p_{c_{t}}^{(i-1)}\left[x_{t}\right] \cdot \pi^{(i-1)}\left[c_{t}\right]}{\sum_{c_{t}=1}^{K} p\left(x_{t} \mid c_{t}, \theta^{(i-1)}\right) \cdot \pi^{(i-1)}\left[c_{t}\right]}
\end{aligned}
$$

M-step As we already saw, we set

$$
\pi_{k}=\frac{\sum_{t=1}^{n} Q_{t}^{(i)}(k)}{n}
$$

Now as for the remaining parameters, we want to maximize

$$
\underset{p_{1}, \ldots, p_{K}}{\operatorname{argmax}}\left(\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(p_{k}\left[x_{t}\right]\right)\right)
$$

Define $L\left(p_{1}, \ldots, p_{K}\right)=\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(p_{k}\left[x_{t}\right]\right)$. We want to optimize $L\left(p_{1}, \ldots, p_{K}\right)$ w.r.t. p_{1}, \ldots, p_{k} s.t. each p_{k} is a valid probability distribution over $\{1, \ldots, d\}$. As an example, to find the optimal p_{k}, we want to optimize over p_{k} subject to the constraint $\sum_{j=1}^{d} p_{k}[j]=1$ (ie. its a distribution), we do so by introducing Lagrange variables. That is we find $p_{k}[j]$'s by taking derivative and equating to 0 the following Lagrangian objective,

$$
L\left(p_{1}, \ldots, p_{K}\right)+\lambda_{k}\left(1-\sum_{j=1}^{d} p_{k}[j]\right)
$$

Taking derivative and equating to 0 , we want to find p_{k} s.t.,

$$
\sum_{t=1}^{n} Q_{t}^{(i)}(k) \frac{1}{p_{k}\left[x_{t}\right]}-\lambda_{k}=0
$$

In other words, for every $j \in[d]$,

$$
\sum_{t: x_{t}=j} Q_{t}^{(i)}(k) \frac{1}{p_{k}[j]}-\lambda_{k}=0
$$

Hence we conclude that

$$
p_{k}[j] \propto \sum_{t: x_{t}=j} Q_{t}^{(i)}(k)
$$

Hence,

$$
p_{k}[j]=\frac{\sum_{t: x_{t}=j} Q_{t}^{(i)}(k)}{\sum_{t=1}^{n} Q_{t}^{(i)}(k)}
$$

Thus for the M-step when we are dealing with the mixture model with exactly $m=1$ purchase on every round, we get that, for every $k \in[K]$ and every $j \in[d]$,

$$
p_{k}[j]=\frac{\sum_{t: x_{t}=j} Q_{t}^{(i)}(k)}{\sum_{t=1}^{n} Q_{t}^{(i)}(k)}
$$

2.2 Mixture of Multinomials ($m>1$)

E-step On iteration i, for each data point $t \in[n]$, set

$$
\begin{aligned}
Q_{t}^{(i)}\left(c_{t}\right) & =\frac{p\left(x_{t} \mid c_{t}, \theta^{(i-1)}\right) \cdot \pi^{(i-1)}\left[c_{t}\right]}{\sum_{k=1}^{K} p\left(x_{t} \mid k, \theta^{(i-1)}\right) \cdot P\left(k \mid \theta^{(i-1)}\right)} \\
& =\frac{p_{c_{t}}[1]^{x_{t}[1]} \cdot \ldots \cdot p_{c_{t}}[d]^{\left.x_{t} \mid d\right]} \cdot \pi^{(i-1)}\left[c_{t}\right]}{\sum_{c_{t}=1}^{K} p_{c_{t}}[1]^{x_{t}[1]} \cdot \ldots \cdot p_{c_{t}}[d]^{x_{t}[d]} \cdot \pi^{(i-1)}[k]}
\end{aligned}
$$

M-step For mixture distribution, as usual,

$$
\pi_{k}=\frac{\sum_{t=1}^{n} Q_{t}^{(i)}(k)}{n}
$$

Now as for the remaining parameters, we want to maximize

$$
\begin{aligned}
\underset{p_{1}, \ldots, p_{K}}{\operatorname{argmax}} & \left(\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(P\left(x_{t} \mid c_{t}=k, \theta\right)\right)\right) \\
& =\underset{p_{1}, \ldots, p_{K}}{\operatorname{argmax}}\left(\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(p_{k}[1]^{x_{t}[1]} \ldots \ldots p_{k}[d]^{x_{t}[d]}\right)\right) \\
& =\underset{p_{1}, \ldots, p_{K}}{\operatorname{argmax}}\left(\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \sum_{j=1}^{d} x_{t}[j] \log \left(p_{k}[j]\right)\right)
\end{aligned}
$$

Again to solve this, define $L\left(p_{1}, \ldots, p_{K}\right)=\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \sum_{j=1}^{d} x_{t}[j] \log \left(p_{k}[j]\right)$. We want to optimize $L\left(p_{1}, \ldots, p_{K}\right)$ w.r.t. p_{1}, \ldots, p_{k} s.t. each p_{k} is a valid probability distribution over $\{1, \ldots, d\}$. As an example, to find the optimal p_{k}, we want to optimize over p_{k} subject to the constraint $\sum_{j=1}^{d} p_{k}[j]=1$ (ie. its a distribution), we do so by introducing Lagrange variables. That is we find $p_{k}[j]$'s by taking derivative and equating to 0 the following Lagrangian objective,

$$
L\left(p_{1}, \ldots, p_{K}\right)+\lambda_{k}\left(1-\sum_{j=1}^{d} p_{k}[j]\right)
$$

Taking derivative and equating to 0 , we want to find p_{k} s.t.,

$$
\sum_{t=1}^{n} Q_{t}^{(i)}(k) \sum_{j=1}^{d} x_{t}[j] \frac{1}{p_{k}[j]}-\lambda_{k}=0
$$

In other words, for every $j \in[d]$,

$$
\sum_{t=1}^{n} Q_{t}^{(i)}(k) \frac{x_{t}[j]}{p_{k}[j]}-\lambda_{k}=0
$$

Hence we conclude that

$$
p_{k}[j] \propto \sum_{t=1}^{n} Q_{t}^{(i)}(k) x_{t}[j]
$$

Hence,

$$
p_{k}[j]=\frac{\sum_{t=1}^{n} Q_{t}^{(i)}(k) x_{t}[j]}{\sum_{j=1}^{d} \sum_{t=1}^{n} Q_{t}^{(i)}(k) x_{t}[j]}=\frac{\sum_{t=1}^{n} Q_{t}^{(i)}(k) x_{t}[j]}{\sum_{t=1}^{n} Q_{t}^{(i)}(k)\left(\sum_{j=1}^{d} x_{t}[j]\right)}=\frac{\sum_{t=1}^{n} Q_{t}^{(i)}(k) x_{t}[j]}{m \sum_{t=1}^{n} Q_{t}^{(i)}(k)}
$$

