
Machine Learning for Data Science (CS 4786)

Lecture 15: EM Algorithm and Mixture Models

1 EM Algorithm Recap

E-step:

Q
(i)
t (ct) = P (ct|xt, θ(i−1))

M-step:

θ(i) = argmax
θ∈Θ

n∑
t=1

K∑
ct=1

Q
(i)
t (ct) log(P (xt, ct|θ))

1.1 EM for Mixture Models

For any mixture model with π as mixture distribution, and any arbitrary parameterization of
likelihood of data given cluster assignment, one can write down a more detailed form for EM
algorithm.

E-step On iteration i, for each data point t ∈ [n], set

Q
(i)
t (ct) = P (ct|xt, θ(i−1))

Note that

Q
(i)
t (ct) = P (ct|xt, θ(i−1))

∝ p(xt|ct, θ(i−1))× P (ct|θ(i−1))

∝ p(xt|ct, θ(i−1))× P (ct|θ(i−1))

=
p(xt|ct, θ(i−1)) · π(i−1)[ct]∑K
ct=1 p(xt|ct, θ(i−1)) · π(i−1)[ct]

So all we need to fill out the n×K sized Q matrix is to have a current guess at π and the ability
to compute p(xt|ct, θ(i−1)) up to multiplicative factor.
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θ = argmax
θ∈Θ

n∑
t=1

K∑
k=1

Q
(i)
t (k) logP (xt, ct = k|θ)

= argmax
θ∈Θ

n∑
t=1

K∑
k=1

Q
(i)
t (k) logP (xt|ct = k, θ)× P (ct = k|θ)

= argmax
θ∈Θ

n∑
t=1

K∑
k=1

Q
(i)
t (k) log (P (xt|ct = k, θ)× π[k])

= argmax
θ∈Θ

n∑
t=1

K∑
k=1

Q
(i)
t (k) log (P (xt|ct = k, θ)) +

n∑
t=1

K∑
k=1

Q
(i)
t (k) log (π[k])

Using Θ\π to denote the set of parameters excluding π,

= argmax
θ∈Θ\π ,π

(
n∑
t=1

K∑
k=1

Q
(i)
t (k) log (P (xt|ct = k, θ)) +

n∑
t=1

K∑
k=1

Q
(i)
t (k) log (πk)

)

=

(
argmax
θ∈Θ\π

(
n∑
t=1

K∑
k=1

Q
(i)
t (k) log (P (xt|ct = k, θ))

)
, argmax

π

(
n∑
t=1

K∑
k=1

Q
(i)
t (k) log (πk)

))

Notice that the term in red is exactly the optimization we solved for in GMM example. We know
this already! The solution is:

πk =

∑n
t=1Q

(i)
t (k)

n

and this is the same for any mixture model.

On the other hand, the optimization problem,

argmax
θ∈Θ\π

(
n∑
t=1

K∑
k=1

Q
(i)
t (k) log (P (xt|ct = k, θ))

)

is simply a weighted version of MLE when our observation includes ct’s the hidden or latent vari-
ables. In the M-step, this is the only portion that changes the mixture distribution solution has
same form always.

2 Mixture of Multinomials

Each θ ∈ Θ consist of mixture distribution π which is a distribution over the choices of theK clusters
or types, p1, . . . , pK are K distributions over the d items. The latent variables are c1, . . . , cn the
cluster assignments for the n points indicating that the tth data point was drawn using distribution
pct . x1, . . . , xn are the n observations.
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Story: You own a grocery store and multiple customers walk in to your store and buy stuff. You
want group customers into K group based on distribution over the d products/choices in your store.
Think of customers as being independently drawn and they each belong to one of K groups. We
will first start with a simple scenario and build up to a more general one. To start with, say each
day a customer walks in to your store and buys m = 1 product. The generative story then is that
we first draw customer type ct ∼ π from a mixture distribution π, next associated with type ct,
there is a distribution pct over products the customer would buy. We draw xt ∈ [d] the product the
customer bought as xt ∼ pct . That is

p(xt|ct = k, θ) = pct [xt]

Next we can move to a slightly more complex scenario where the customer on every round buys
(fixed) m > 1 products by drawing xt as m samples from the multinomial distribution. That is,

p(xt|ct = k, θ) =
m!

xt[1]! · . . . · xt[d]!
pk[1]xt[1] · . . . · pk[d]xt[d]

where xt[j] indicates the amount of product j bought by the customer t.

2.1 Mixture of Multinomials (Primer m = 1)

E-step On iteration i, for each data point t ∈ [n], set

Q
(i)
t (ct) =

p(xt|ct, θ(i−1)) · π(i−1)[ct]∑K
ct=1 p(xt|ct, θ(i−1)) · P (ct|θ(i−1))

=
p

(i−1)
ct [xt] · π(i−1)[ct]∑K

ct=1 p(xt|ct, θ(i−1)) · π(i−1)[ct]

M-step As we already saw, we set

πk =

∑n
t=1Q

(i)
t (k)

n

Now as for the remaining parameters, we want to maximize

argmax
p1,...,pK

(
n∑
t=1

K∑
k=1

Q
(i)
t (k) log (pk[xt])

)

Define L(p1, . . . , pK) =
∑n

t=1

∑K
k=1Q

(i)
t (k) log (pk[xt]). We want to optimize L(p1, . . . , pK)

w.r.t. p1, . . . , pk s.t. each pk is a valid probability distribution over {1, . . . , d}. As an exam-
ple, to find the optimal pk, we want to optimize over pk subject to the constraint

∑d
j=1 pk[j] = 1

(ie. its a distribution), we do so by introducing Lagrange variables. That is we find pk[j]’s by
taking derivative and equating to 0 the following Lagrangian objective,

L(p1, . . . , pK) + λk(1−
d∑
j=1

pk[j])
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Taking derivative and equating to 0, we want to find pk s.t.,

n∑
t=1

Q
(i)
t (k)

1

pk[xt]
− λk = 0

In other words, for every j ∈ [d], ∑
t:xt=j

Q
(i)
t (k)

1

pk[j]
− λk = 0

Hence we conclude that
pk[j] ∝

∑
t:xt=j

Q
(i)
t (k)

Hence,

pk[j] =

∑
t:xt=j

Q
(i)
t (k)∑n

t=1Q
(i)
t (k)

Thus for the M-step when we are dealing with the mixture model with exactly m = 1 purchase
on every round, we get that, for every k ∈ [K] and every j ∈ [d],

pk[j] =

∑
t:xt=j

Q
(i)
t (k)∑n

t=1Q
(i)
t (k)

2.2 Mixture of Multinomials (m > 1)

E-step On iteration i, for each data point t ∈ [n], set

Q
(i)
t (ct) =

p(xt|ct, θ(i−1)) · π(i−1)[ct]∑K
k=1 p(xt|k, θ(i−1)) · P (k|θ(i−1))

=
pct [1]xt[1] · . . . · pct [d]xt[d] · π(i−1)[ct]∑K
ct=1 pct [1]xt[1] · . . . · pct [d]xt[d] · π(i−1)[k]

M-step For mixture distribution, as usual,

πk =

∑n
t=1Q

(i)
t (k)

n

Now as for the remaining parameters, we want to maximize

argmax
p1,...,pK

(
n∑
t=1

K∑
k=1

Q
(i)
t (k) log (P (xt|ct = k, θ))

)

= argmax
p1,...,pK

(
n∑
t=1

K∑
k=1

Q
(i)
t (k) log

(
pk[1]xt[1] · . . . · pk[d]xt[d]

))

= argmax
p1,...,pK

 n∑
t=1

K∑
k=1

Q
(i)
t (k)

d∑
j=1

xt[j] log (pk[j])


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Again to solve this, define L(p1, . . . , pK) =
∑n

t=1

∑K
k=1Q

(i)
t (k)

∑d
j=1 xt[j] log (pk[j]). We want

to optimize L(p1, . . . , pK) w.r.t. p1, . . . , pk s.t. each pk is a valid probability distribution over
{1, . . . , d}. As an example, to find the optimal pk, we want to optimize over pk subject to the
constraint

∑d
j=1 pk[j] = 1 (ie. its a distribution), we do so by introducing Lagrange variables. That

is we find pk[j]’s by taking derivative and equating to 0 the following Lagrangian objective,

L(p1, . . . , pK) + λk(1−
d∑
j=1

pk[j])

Taking derivative and equating to 0, we want to find pk s.t.,

n∑
t=1

Q
(i)
t (k)

d∑
j=1

xt[j]
1

pk[j]
− λk = 0

In other words, for every j ∈ [d],

n∑
t=1

Q
(i)
t (k)

xt[j]

pk[j]
− λk = 0

Hence we conclude that

pk[j] ∝
n∑
t=1

Q
(i)
t (k)xt[j]

Hence,

pk[j] =

∑n
t=1Q

(i)
t (k)xt[j]∑d

j=1

∑n
t=1Q

(i)
t (k)xt[j]

=

∑n
t=1Q

(i)
t (k)xt[j]∑n

t=1Q
(i)
t (k)

(∑d
j=1 xt[j]

) =

∑n
t=1Q

(i)
t (k)xt[j]

m
∑n

t=1Q
(i)
t (k)
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