Machine Learning for Data Science (CS4786) Lecture 19

Graphical Models

April 16, 2015

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2015sp/

VARIABLE ELIMINATION: EXAMPLES

Variable Elimination: Bayesian Network

Initialize List with conditional and marginal probability distributions

Pick an order of elimination I for remaining variables
For each $X_{i} \in I$
Find distributions in List containing X_{i}, remove them from List and add them to list ${ }^{i}$

Define new distribution

$$
m_{X_{i}}=\sum_{X_{i}} \prod_{j} \operatorname{list}_{j}^{\mathrm{t}}\left[X_{i}\right]
$$

Instert $m_{X_{i}}$ into List

End

Return List

VARIABLE ELIMINATION: EXAMPLES

Message Passing

- Often we need more than one marginal computation
- Over variables we need marginals for, there are many common distributions/potentials in the list
- Can we exploit structure and compute these intermediate terms that can be reused?

Message Passing Example

Belief Propagation

- Think of variables as nodes in a network, each node is allowed to chat with its neighbors
- Adjacent nodes receive messages from neighbors telling the node how to update its belief
- Each node in turn sends messages to its neighbors: based on observation, previous received messages, marginal and conditional distributions telling the other how to update beliefs
- (Hopefully) All the nodes converge on their beliefs

BELIEF PROPAGATION

(1) For every observation $X_{j}=x_{j}$ define $E_{X_{j}}(x)=\mathbf{1}\left\{x=x_{j}\right\}$, for unobserved variables set $E_{X_{j}}(x)=1$
(2) At round 0 , all messages between nodes are 1

Belief Propagation

For any node X_{i}

- Incoming message to node from children:

$$
\lambda(x)=E_{X_{i}}(x) \prod_{j \in \operatorname{children}\left(X_{i}\right)} \lambda_{X_{j}}(x)
$$

- Incoming message from Parents:

$$
\pi(x)=\sum_{u} P\left(X_{i}=x \mid \operatorname{Parent}\left(X_{i}\right)=u\right) \prod_{k \in \operatorname{Parent}\left(X_{i}\right)} \pi_{X_{i}}\left(u_{k}\right)
$$

- Outgoing message to Parent X_{j} :

$$
\lambda_{X_{i}}\left(u_{i}\right) \propto \sum_{x} \lambda(x) \sum_{u \backslash u_{i}} P\left(X_{i}=x \mid \operatorname{Parent}\left(X_{i}\right)=u\right) \prod_{k \neq i} \pi_{X_{i}}\left(u_{k}\right)
$$

- Outgoing message to child X_{j} :

$$
\pi_{X_{j}}(x) \propto \pi(x) E_{X_{i}}(x) \prod_{k \neq j} \lambda_{Y_{j}}(x)
$$

Inference Via Sampling

(1) Sample from the generative model
(2) Calculate empirical marginals
(3) Might require many samples to be accurate

