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4/7/2015: Summary of our three generative stories

In all cases, we assume that there are n customers. When we need an index variable ranging from 1 to
n, we’ll use the variable t.

We will further assume, for simplicity, that there is a fixed number m = 5 such that each customer
makes exactly m purchases. When we need an index variable ranging from 1 to m, we’ll use the variable q.

We will also assume that there are three products, pepsi, coke, and sprite,1 which we’ll refer to by
Roman-numeral indices I=pepsi, II=coke, and III=sprite. Hence, d, the number of products, will always be
3. [Insert a joke about having D set to equal 500 instead.] When we need an index variable ranging from 1
to d, we’ll use the variable `.

When we need to index preference types, we’ll use lower-case roman numerals, for example, the second
preference type will be referred to as φii. When we need an index variable ranging from 1 to the number of
preference types K, we’ll use the variable j.

So, when you see an upper-case Roman numeral, think “an actual product”, like “coke”. When you see
a lower-case Roman numeral, think “a preference type”, like “likely to buy either pepsi or sprite”. Given
these visual mnenomics, on no account will we use “i” as a variable!

Mixture of multinomials

• Generative story: Mother Nature has predeterminedK preference types. For example, we might have
K = 4 and φi, φii, φiii, and φiv as follows:
φi[I] = .9 φi[II] = .09 φi[III] = .01 (mostly likes to buy pepsi)
φii[I] = .2 φii[II] = .6 φii[III] = .2 (mostly likes to buy coke)
φiii[I] = .1 φiii[II] = .2 φiii[III] = .7 (mostly likes to buy sprite)
φiv[I] =.33 φiv[II] = .33 φiv[III] = .34 (no real preference among the three)

Mother Nature has also predetermined that there is a distribution π over the K preference types. For
example, it might be π[i] = .6, π[ii] = .3, π[iii] = .09, π[iv] = .01, that is, the most likely preference
type is that of a pepsi-lover.

To create the tth customer, Mother Nature first picks their customer type ct according to π. So in
our example, ct will be one of i, ii, iii, iv. Then, the tth customer makes all of their m purchases
according to the chosen preference type φct .

For example, customer 1 might be allocated to the most likely type, i (probability .6 according to π);
and then for their five purchases they buy five pepsis, the most likely product according to φi, and
none of the other products. And the same thing might happen with the next 99 customers. Whereas
customer 100 might get an unlikely assignment c100 = iii (probability .09 according to π), and then,
choosing products according to φiii, buy 1 coke and 4 sprites.

• The data we are actually given: For the tth customer, we have the d-dimensional vector xt, where
xt[I] is the number of Is that that customer bought, xt[II] is the number of IIs that that customer
bought, and xt[III] is the number of IIIs that that customer bought.

• In real life: the task is, given the data, to recover the hidden values.
1Our use of lowercase indicates that these are completely made-up product names, not having anything to do with real-life

brands such as Pepsi...
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Anonymous second model - changing preferences for each purchase

• Generative story: As in the previous story, Mother Nature has predetermined K preference types and
the distribution π over the K preference types. See the examples above.

To create the tth customer’s qth purchase2, Mother Nature first picks the preference ct[q] being utilized
for this purchase according to π. So in our example, ct[q] will be one of i, ii, iii, iv. Then, the tth

customer makes their qth purchase according to the chosen preference type φct[q].

For example, customer first 1st purchase gets chosen by Mother Nature according to π to be motivated
by the most likely preference type, i (probability .6 according to π), and by choosing according to
φc1[1] = φi, the customer buys a pepsi. Mother Nature also decides by a draw according to π that
this customer’s 2nd purchase is also motivated by preference type i, and again, choosing according
to φc1[2] = φi, the customer again buys a pepsi. For the third purchase, Mother Nature rolls the die
and comes up with c1[3] = ii, the second most likely preference type according to π. Given this
preference type, the customer then decides to buy a coke (most likely purchase according to φii).
Customer 1’s 4th and 5th purchases are made similarly.

For customer 2, as with customer 1, the most likely outcome Mother Nature will choose as preference
type for their first purchase is c2[1] = i, and similarly for customer 2’s other four purchases.

• The data we are actually given: For the tth customer, we have the m-dimensional vector xt, where
now xt[1] is the product that the customer bought for their first purchase, xt[2] is the product the
customer bought for their second purchase, xt[3] is the product that the customer bought for their
third purchase, and so on.

• In real life: the task is, given the data, to recover the hidden values.

Latent Dirichlet allocation (LDA) . Data and task are the same as above.

• Generative story: Mother Nature predetermines a Dirichlet prior on possible “profiles” π — multino-
mials over preference types, as discussed in class. In other words, she predetermines the parameter
vector (α1, α2, . . . , αK) for the Dirichlet profiles prior.
Then, seeing no reason not to re-use a technique, she predetermines a Dirichlet prior on the preference
types φ themselves, since they are also multinomials (but over products). This means that she prede-
termines the parameter vector (β1, β2, . . . , βd) for the preference-type prior. She then predetermines
the K preference types φj by drawing K samples from the preference types prior.

To create the tth customer, Mother Nature first picks this particular user’s πt, i.e., their distribution
over preferences, according to the profiles prior. Then, to motivate the tth customer’s qth purchase,
Mother Nature first picks the preference ct[q] being utilized for this purchase according to πt. So
in our example, ct[q] will be one of i, ii, iii, iv. Then, the tth customer makes their qth purchase
according to the chosen preference type φct[q].

Thus, we might have π1 be like our π in the example above — heavily weighted towards always
being a pepsi lover; whereas for customer 2, it might turn out that they get π2[i] = .25, π2[ii] =
.25, π2[iii] = .25, π2[iv] = .25, meaning that they are equally likely to be motivated by any one of
the four preference types for each individual purchase.

2We use red to highlight changes from the preceding model.
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