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EXAMPLES

Gaussian Mixture Model
Each θ consists of mixture distribution π = (π1, . . . ,πK), means
µ1, . . . ,µK ∈ Rd and covariance matrices Σ1, . . . ,ΣK
At time t we generate a new tree as follows:

ct ∼ π, xt ∼ N(µct ,Σct)



PROBABILISTIC MODELS

More generally:
Θ consists of set of possible parameters

We have a distribution Pθ over the data induced by each θ ∈ Θ

Data is generated by one of the θ ∈ Θ

Learning: Estimate value or distribution for θ∗ ∈ Θ given data



MAXIMUM LIKELIHOOD PRINCIPAL

Pick θ ∈ Θ that maximizes probability of observation

θMLE = argmaxθ∈Θ log Pθ(x1, . . . ,xn)
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Likelihood



MAXIMUM A POSTERIORI

Pick θ ∈ Θ that is most likely given data

θMAP = argmaxθ∈Θ log P(θ∣x1, . . . ,xn)

= argmaxθ∈Θ P(x1, . . . ,xn∣θ)
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likelihood

P(θ)
±

prior



LATENT VARIABLES

We only observe x1, . . . ,xn, cluster assignments c1, . . . , cn are not
observed

Finding θ ∈ Θ (even for 1-d GMM) that directly maximizes
Likelihood or A Posteriori given x1, . . . ,xn is hard!

Given latent variables c1, . . . , cn, the problem of maximizing
likelihood (or a posteriori) became easy

Can we use latent variables to device an algorithm?



EXPECTATION MAXIMIZATION ALGORITHM

For demonstration we shall consider the problem of finding MLE
(MAP version is very similar)

Initialize θ(0) arbitrarily, repeat unit convergence:

(E step) For every t, define distribution Qt over the latent variable ct as:

Q(i)t (ct) = P(ct∣xt,θ
(i−1)

)

(M step)

θ(i) = argmaxθ∈Θ

n

∑

t=1
∑

ct

Q(i)t (ct) log P(xt, ct∣θ)
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EXAMPLE: EM FOR GMM

E step: For every k ∈ [K],

Q(i)t (ct = k) = P (ct = k∣xt,θ
(i−1)

) = P (xt∣ct = k,θ(i−1)
) × P (ct = k∣θ(i−1)

)

∝ φ (xt;µ
(i−1)
k ,Σ

(i−1)
k )
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gaussian p.d.f.

×π
(i−1)
k

M step: Given Q1, . . . ,Qn, we need to find

θ(i) = argmax
θ∈Θ

n

∑

t=1

K

∑

k=1
Q(i)t (k) log P(xt, ct = k∣θ)

= argmax
θ

n

∑

t=1

K

∑

k=1
Q(i)t (k) (log P(xt∣ct = k,θ) + log P(ct = k∣θ))

= argmax
π,µ1,...,K,Σ1,...,K

n

∑

t=1

K

∑

ct=1
Q(i)t (k) (logφ (xt;µk,Σk) + logπk)
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EXAMPLE: EM FOR GMM

For every k ∈ [K], the maximization step yields,

µ
(i)
k =

∑
n
t=1 Q(i)

t (k)xt

∑
n
t=1 Qt(k)

, Σ
(i)
k =

∑
n
t=1 Q(i)

t (k) (xt − µ
(i)
k ) (xt − µ

(i)
k )

⊺

∑
n
t=1 Qt(k)

π
(i)
k =

∑
n
t=1 Q(i)

t (k)
n
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HARD AND SOFT ASSIGNMENTS

Hard GMM: make E-step a hard assignments with Q(i)
t = ek∗t where

k∗t = argmaxk∈[K]φ (xt;µ
(i−1)
k ,Σ

(i−1)
k ) × π

(i−1)
k

Soft k-means:

Q(i)
t (k)∝ exp(− ∥xt − µ

(i−1)
k ∥

2

2
/σ2

) and µ
(i)
k =

∑
n
t=1 Q(i)

t (k)xt

∑
n
t=1 Q(i)

t (k)

k-means can be seen as hard GMM with spherical covariance and



WHY SHOULD EM WORK?

A very high level view:
Performing E-step will never decrease log-likelihood (or log a
posteriori)

Performing M-step will never decrease log-likelihood (or log a
posteriori)
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WHY SHOULD EM WORK?

Steps to show that log Lik(θ(i+1)
) ≥ log Lik(θ(i)

) :

Insert latent variables

Use Jensen’s inequality (log is a concave function)

Massage the terms!



WHY SHOULD EM WORK?

Likelihood never decreases

So whenever we converge we converge to a local optima

However problem is non-convex and can have many local optimal

In general no guarantee on rate of convergence

In practice, do multiple random initializations and pick the best
one!



EM IN GENERAL

There was nothing special about GMM or clustering problems

EM can be used as a general strategy for any problem with
latent/missing/unobserved variables

The MAP version only involves an extra prior term over θ
multiplied to the likelihood

In general probabilistic models with observed and latent variables
can be represented succinctly as graphical models.
Next time . . .


