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CLUSTERING

For arbitrary set of points, we can have either
Scale invariance
Consistency

OR
Universality/Richness

Assume structure or prior information on the set of points

Assume we have set Θ of possible models and data is generated
from one of these θ ∈ Θ:

(xt, ct) ∼ Pθ(∣(x1, c1), . . . , (xt−1, ct−1))
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EXAMPLES

Apple doesn’t fall far from its tree model:
Each θ consists of position of initial trees µ1, . . . ,µK ∈ R2 and
mixture distribution π = (π1, . . . ,πK)where πi is the probability
with which we get tree of fruit i
At time t we generate a new tree as follows:

ct ∼ π
Parentt ∼ pick a parent tree uniformly from one of the ct trees
xt ∼ N(xParentt ,Σ)

Gaussian Mixture Model
Each θ consists of mixture distribution π = (π1, . . . ,πK), means
µ1, . . . ,µK ∈ Rd and covariance matrices Σ1, . . . ,ΣK
At time t we generate a new tree as follows:

ct ∼ π, xt ∼ N(µct ,Σct)
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PROBABILISTIC MODELS

More generally:
Θ consists of set of possible parameters

We have a distribution Pθ over the data induced by each θ ∈ Θ

Data is generated by one of the θ ∈ Θ

Learning: Estimate value or distribution for θ∗ ∈ Θ given data



MAXIMUM LIKELIHOOD PRINCIPAL

Pick θ ∈ Θ that maximizes probability of observation

Reasoning:
One of the models in Θ is the correct one
Given data we pick the one that best explains the observed data
Equivalently pick the maximum likelihood estimator,

θMLE = argmaxθ∈Θ log Pθ(x1, . . . ,xn)

Often referred to as frequentist view
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MAXIMUM A POSTERIORI

Pick θ ∈ Θ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data
Given data we pick the model that we believe the most
Pick θ that maximizes log P(θ∣x1, . . . ,xn)

I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians
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MAXIMUM A POSTERIORI

Pick θ ∈ Θ that is most likely given data

Maximize a posteriori probability of model given data

θMAP = argmaxθ∈ΘP(θ∣x1, . . . ,xn)
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P(x1, . . . ,xn∣θ)P(θ)
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P(θ)
±

prior

= argmaxθ∈Θ log P(x1, . . . ,xn∣θ) + log P(θ)
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EXAMPLE: GAUSSIAN MIXTURE MODEL

MLE: θ = (µ1, . . . ,µK),π

Pθ(x1, . . . ,xn) =
n
∏

t=1

⎛

⎝

K
∑

i=1
πi

1
√

(2 ∗ 3.1415)2∣Σi∣
exp (−(xt − µi)

⊺Σi(xt − µi))
⎞

⎠

MAP: with prior µi ∼ N(0,σI) and uniform prior on π

P(θ∣x1,...,n) =
n
∏

t=1

⎛

⎝

K
∑

i=1
πi

1
√

(2 ∗ 3.1415)2∣Σi∣
exp (−(xt − µi)

⊺Σi(xt − µi))
⎞

⎠

×

K
∏

i=1

1
√

(4 ∗ 3.1415)2
exp (−∥µi∥

2
)
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WHAT AFTER WE PICK θ∗ ∈ Θ?

θ∗ provides us a model/distribution from which data is generated

In clustering for example, we can compute Pθ∗(ct∣xt)

Hence we could assign to xt cluster id ct that has the largest
probability. Inference step.

There are rough arguments



WHAT AFTER WE PICK θ∗ ∈ Θ?

θ∗ provides us a model/distribution from which data is generated

In clustering for example, we can compute Pθ∗(ct∣xt)

Hence we could assign to xt cluster id ct that has the largest
probability. Inference step.

There are rough arguments



WHAT AFTER WE PICK θ∗ ∈ Θ?

θ∗ provides us a model/distribution from which data is generated

In clustering for example, we can compute Pθ∗(ct∣xt)

Hence we could assign to xt cluster id ct that has the largest
probability. Inference step.

There are rough arguments



WHAT AFTER WE PICK θ∗ ∈ Θ?

θ∗ provides us a model/distribution from which data is generated

In clustering for example, we can compute Pθ∗(ct∣xt)

Hence we could assign to xt cluster id ct that has the largest
probability. Inference step.

There are rough arguments



THE BAYESIAN CHOICE

Don’t pick any θ∗ ∈ Θ

Model is simply an abstraction

We have a prosteriori distribution over models, why pick one if in
the end of the day we only want cluster assignments

For each point find probability of cluster assignment we get by
integrating over a posteriori probability of parameters θ

We will come back to this later . . .
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LATENT VARIABLES

We only observe locations of trees, we don’t know which tree they
are, ie. c1, . . . , cn are not observable

Unobserved variables are referred to as latent variables

We only pick θMLE or θMAP that maximizes likelihood or a
posteriori probability given observation

So why bother with the latent variables?
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MLE FOR GMM

Let us consider the one dimensional case,

log Pθ(x1,...,n) =
n

∑

t=1
log
⎛

⎝

K

∑

i=1
πi

1
√

(2 ∗ 3.1415σi)
2

exp (−(xt − µi)
2
/σ2

i )
⎞

⎠

Now consider the partial derivative w.r.t. µ1, we have:

∂ log Pθ(x1,...,n)

∂µ1
=

n

∑

t=1

π1
σ1

exp(− (xt−µ1)
2

σ2
1
)

∑
K
i=1

πi
σi

exp(− (xt−µi)
2

σ2
i
)

Even given all other parameters, optimizing w.r.t. just µ! is hard!
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MLE FOR GMM

Say by some magic you knew cluster assignments, then

log Pθ((xt, ct)1,...,n) =
n

∑

t=1
log
⎛
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πct
√

(2 ∗ 3.1415σct)
2

exp(−
(xt − µct)
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MLE FOR GMM

Optimize for σi and π, what do you get?



TOWARDS EM ALGORITHM

Say we are interested in either MLE or MAP estimators

Latent variables can help, but we have a chicken and egg problem

Given all variables maximizing likelihood/a posteriori is easy

Given model parameter, optimizing distribution over the latent
variables is easy


