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THE TALL, THE FAT AND the Ugly

d and n so large we can’t even store in memory
Only have time to be linear in size(X) = n × d

I there any hope?
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WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Consider any vector x̃ ∈ Rd and let ỹ =W�
x̃. Note that

ỹ[j]2 = ��
d�

i=1
W[i, j] ⋅ x̃[i]��

2

=�
i,i ′
(W[i, j] ⋅ x̃[i]) ⋅ �W[i ′, j] ⋅ x̃[i ′]�

=�
i,i ′
�W[i, j] ⋅W[i ′, j]� ⋅ �x̃[i] ⋅ x̃[i ′]�



RANDOM PROJECTION

What does “it works” even mean?

Distances between all pairs of data-points in low dim. projection
is roughly the same as their distances in the high dim. space.

That is, when K is “large enough”, with “high probability”, for all
pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2
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x̃. Note that
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WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Hence,

E�ỹ[j]2� = d�
i,i ′=1

E��W[i, j] ⋅W[i ′, j]�� ⋅ �x̃[i] ⋅ x̃[i ′]�
if i ≠ i ′, W[i, j] and W[i ′, j] are independent and so

= d�
i=1

E��W[i, j]2��x̃[i]2 +�
i≠i ′
�E[W[i, j]] ⋅E�W[i ′, j]�� ⋅ �x̃[i] ⋅ x̃[i ′]� = d�

i=1
E��W[i, j]2��x̃[i]2

= d�
i=1

x̃[i]2�√K
2 = �x̃�22 �K
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WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Hence,

E��ỹ�22� = K�
j=1

E�ỹ[j]2� = K�
j=1
�x̃�22 �K = �x̃�22

If we let x̃ = xs − xt then

ỹ =W�
x̃ =W�

xs −W�
xt = ys − yt

Hence for any s, t ∈ {1, . . . ,n},
E��ys − yt�22� = �xs − xt�22

Lets try this in Matlab . . .
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For large K, not only true in expectation but also with high probability

For any ✏ > 0, if K ≈ log (n��) �✏2, with probability 1 − � over draw of
W, for all pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2
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This is called the Johnson-Lindenstrauss lemma or JL lemma for short.
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n= 
1000

d = 1000

If we take K = 69.1/✏2, with probability

0.99 distances are preserved to accuracy ✏
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WHY IS THIS SO RIDICULOUSLY MAGICAL?

n= 
1000

d = 1000000

If we take K = 69.1/✏2, with probability

0.99 distances are preserved to accuracy ✏


