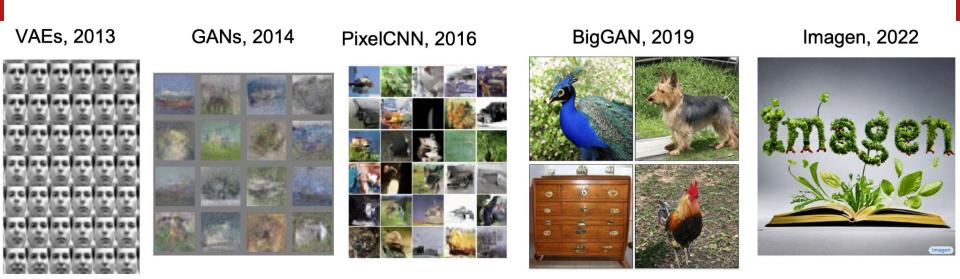


Cornell Bowers C·IS College of Computing and Information Science

Deep Learning

Week 7: Diffusion Models

Progress In Generative Modeling



Text-to-Image Diffusion Models

a robot cooking dinner in the kitchen

sitting on a wooden chair side by side

near a tree with red leaves

a painting of trees near a peaceful lake

A heart made of wood

an old man with green eyes and a long grey beard

A painting of an adorable rabbit sitting on a colorful splash

an afrofuturist lady wearing gold jewelry

a lightning bolt on it

A cool orange cat wearing sunglasses playing a guitar with a group of dancing bananas

Dai, Xiaoliang, et al. "Emu: Enhancing image generation models using photogenic needles in a haystack." arXiv preprint arXiv:2309.15807 (2023).

Video Generation

Video Generation

Prompt: 3D animation of a small, round, fluffy creature with big, expressive eyes explores a vibrant, enchanted forest.

Video Generation

Prompt: 3D animation of a small, round, fluffy creature with big, expressive eyes explores a vibrant, enchanted forest.

Video Generation

Prompt: 3D animation of a small, round, fluffy creature with big, expressive eyes explores a vibrant, enchanted forest.

Prompt: A cat waking up its sleeping owner demanding breakfast.

Video Generation

Prompt: 3D animation of a small, round, fluffy creature with big, expressive eyes explores a vibrant, enchanted forest.

Prompt: A cat waking up its sleeping owner demanding breakfast.

Cornell Bowers C·IS Autoencoders

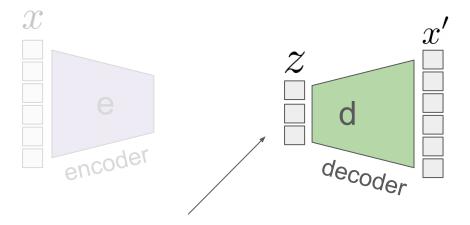
• Reconstruction loss: mean squared error

$$\sum_{x \in \mathcal{D}} (x - x')^2$$
 where $x' = e(d(x))$

$$\begin{array}{c} x \\ e \\ e \\ encoder \end{array} \begin{array}{c} x' \\ d \\ de_{coder} \end{array}$$

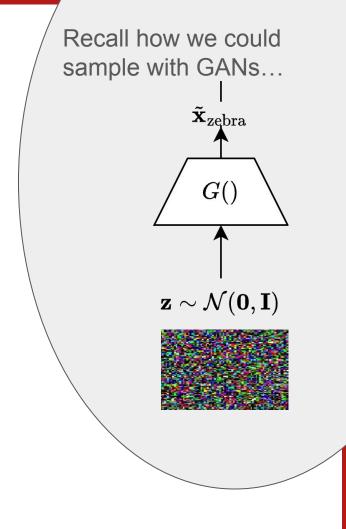
The Result: an Autoencoder. [Kramer, 1991]

Sampling from an Autoencoder



 $z \sim \mathcal{N}(0, I)$

feed decoder (Gaussian) noise?



Autoencoder trained on MNIST: latent space

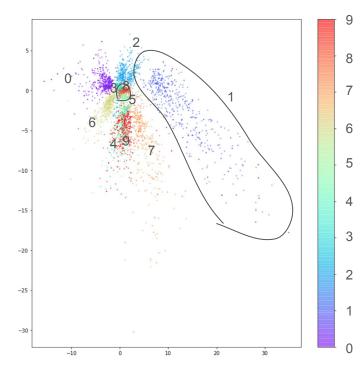


Figure 3-8. Plot of the latent space, colored by digit

Not a very nice representation...

- lots of empty space
- no symmetries between digit representations

Question:

What are the implications for sampling?

reconstructed sample

$$x' = d(e(x))$$

new image? $x'=d(\ {
m noise}\)$

Variational Inference

- Have joint model $p({m x},{m z})$ $p({m z})=\mathcal{N}({m 0},{f I})$
- observe x (but not z);
- want to calculate posterior $p(\boldsymbol{z}|\boldsymbol{x}) = rac{p(\boldsymbol{x}, \boldsymbol{z})}{p(\boldsymbol{x})}$

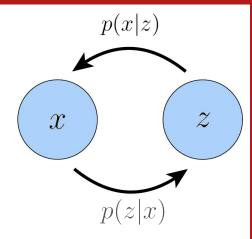
p

• which requires

$$p(x) = \int p(x, z) \,\mathrm{d}z$$

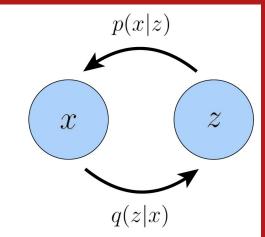
• i.e., the "evidence".

but the integral is often intractable! So, instead ...



Variational Inference

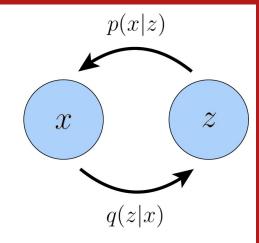
• Introduce a learnable variational approximation of the posterior $q_{m{\phi}}(m{z}|m{x}) pprox p(m{z}|m{x})$



Variational Inference

- Introduce a learnable variational approximation of the posterior $q_{\phi}(m{z}|m{x}) pprox p(m{z}|m{x})$
- Bound the likelihood using the variational posterior

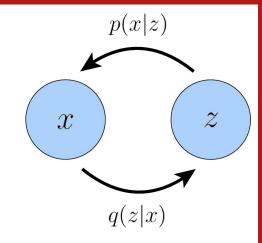
$$\log p(\boldsymbol{x}) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right] + D_{\mathrm{KL}}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) \parallel p(\boldsymbol{z}|\boldsymbol{x}))$$
Intractable; Evidence/
Log-likelihood Tractable; Evidence
Lower Bound (ELBO) Intractable; Divergence
from true posterior



Variational Inference

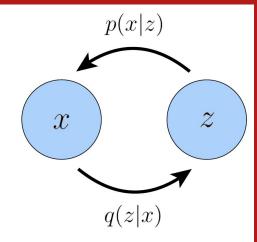
- Introduce a learnable variational approximation of the posterior $q_{\phi}(m{z}|m{x}) pprox p(m{z}|m{x})$
- Bound the likelihood with the ELBO

$$\log p(\boldsymbol{x}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \right] + D_{\mathrm{KL}}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) \parallel p(\boldsymbol{z}|\boldsymbol{x}))$$



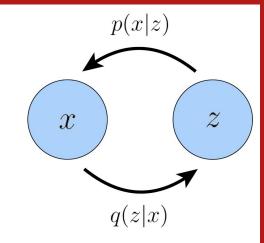
Variational Inference

- Introduce a learnable variational approximation of the posterior $q_{\phi}(m{z}|m{x}) pprox p(m{z}|m{x})$
- Bound the likelihood with the ELBO



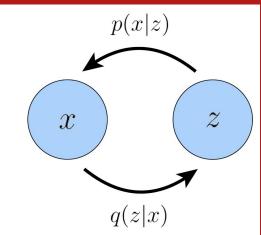
The Evidence Lower Bound (ELBO)

- Maximize the ELBO
- Either:
 - Maximizes the likelihood of the observed data
 - Improves the approximation of the unknown posterior



$$\mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right] = \log p(\boldsymbol{x}) - D_{\mathrm{KL}}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) \parallel p(\boldsymbol{z}|\boldsymbol{x}))$$
Tractable; ELBO Intractable; Evidence Intractable; Divergence between approximate and true posterior

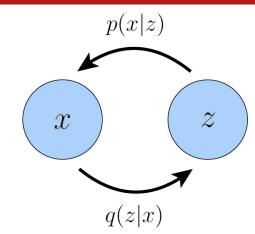
The Evidence Lower Bound (ELBO)



$$\mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}\left[\log\frac{p(\boldsymbol{x},\boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}\right] = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}\left[\log\frac{p_{\theta}(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}\right]$$

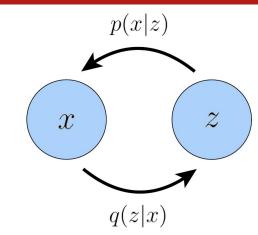
(Chain Rule of Probability)

The Evidence Lower Bound (ELBO)



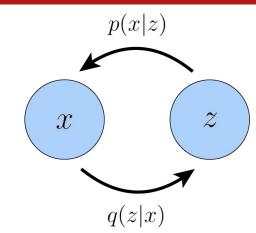
(Split the Expectation)

$$\mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right] = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p_{\theta}(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right]$$
(Chain Rule of Probability)
$$= \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) \right] + \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right]$$
(Split the Expectation)

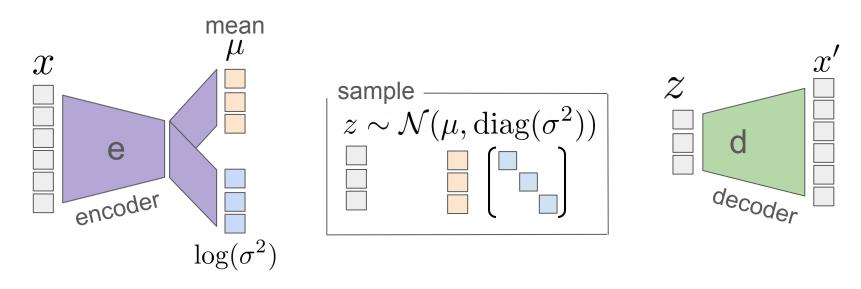


$$\begin{split} \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right] &= \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p_{\theta}(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right] & \text{(Chain Rule of Probability)} \\ &= \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) \right] + \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right] & \text{(Split the Expectation)} \\ &= \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) \right] - D_{\mathrm{KL}}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) \parallel p(\boldsymbol{z})) & \text{(Definition of KL Divergence)} \end{split}$$

The Evidence Lower Bound (ELBO)



An Architecture for Gaussians

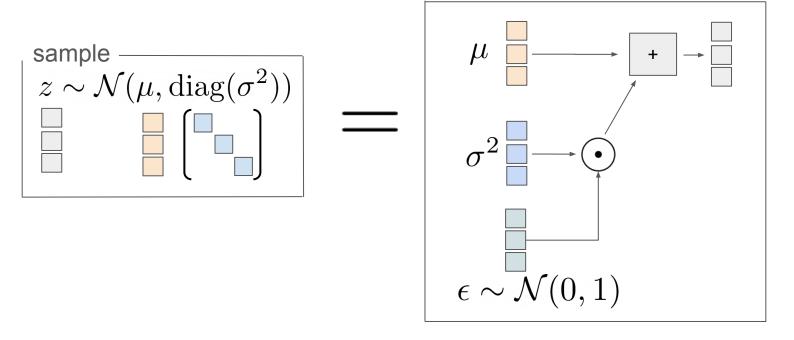


variance

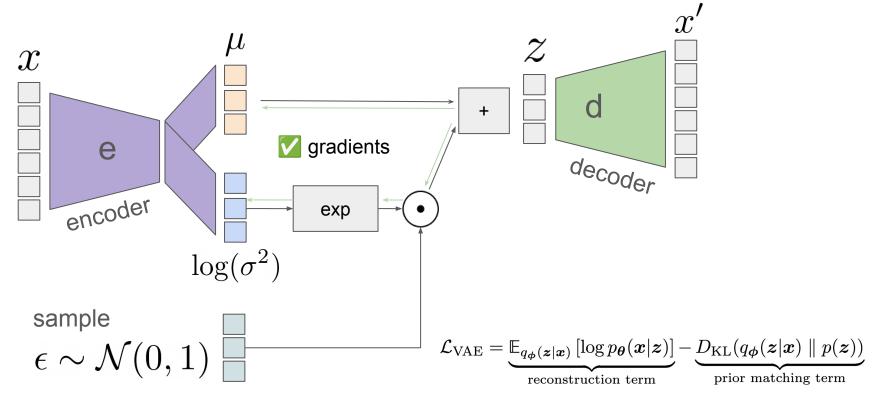
Problem: backpropagation through sampling process?

 $q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$

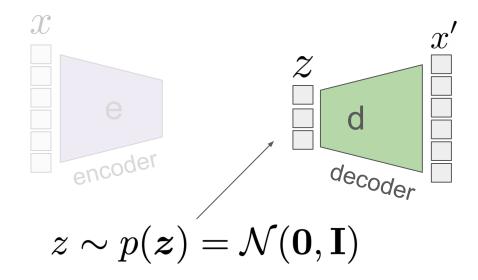
The Reparameterization Trick $\mathcal{N}(\mu, \mathrm{diag}(\sigma^2)) = \mu + \sigma^2 \odot \mathcal{N}(0, I)$



The Reparameterization Trick

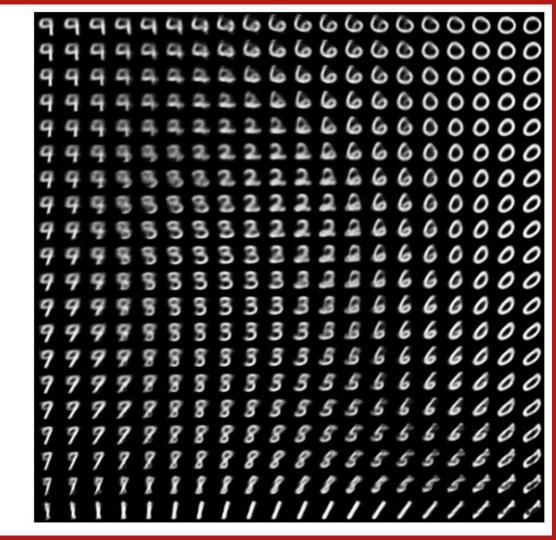


Sampling from a VAE



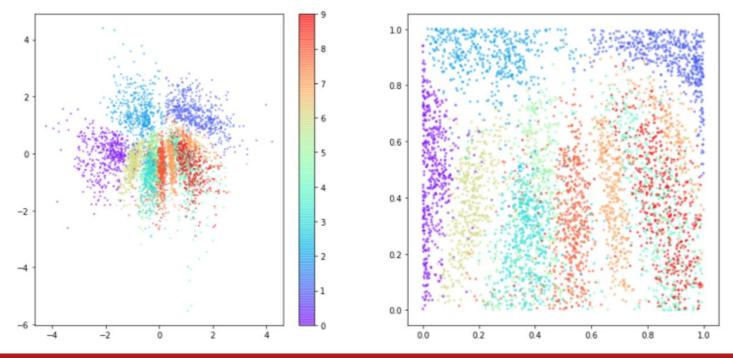
a much nicer space...

can smoothly interpolate digits in a meaningful, digit-y kind of way



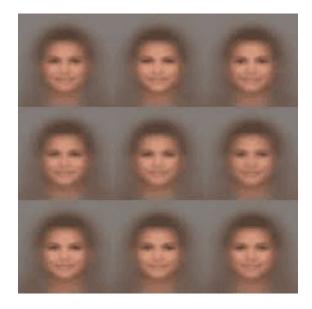
Back to MNIST: Visualizing latent space again

VAE Latent space, note the distribution is centered, and each digit has an equal portion



The Biggest Drawback of VAEs

• Out of the box, generated images can be blurry. **Question:** Why?

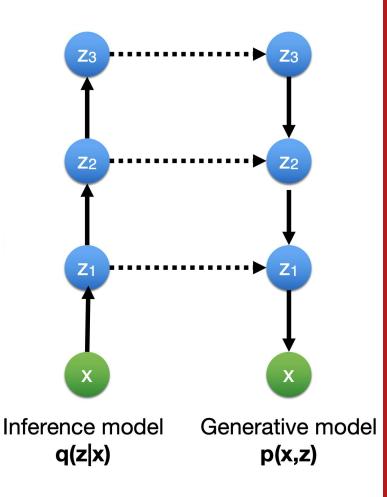


https://borisburkov.net/2022-12-31-1/

Hierarchical VAEs

- "Flat" VAEs suffer from simple priors
- Define a hierarchical generative process

$$q_{\phi}(\mathbf{z}_{1,2,3}|\mathbf{x}) = q_{\phi}(\mathbf{z}_1|\mathbf{x})q_{\phi}(\mathbf{z}_2|\mathbf{z}_1)q_{\phi}(\mathbf{z}_3|\mathbf{z}_2)$$
$$p_{\theta}(\mathbf{z}_{1,2,3}) = p_{\theta}(\mathbf{z}_3)p_{\theta}(\mathbf{z}_2|\mathbf{z}_3)p_{\theta}(\mathbf{z}_1|\mathbf{z}_2)p_{\theta}(\mathbf{x}|\mathbf{z}_1|\mathbf{z}_3)$$



Extending the ELBO

• ELBO derivation is unchanged

$$egin{aligned} \log p(oldsymbol{x}) &= \log \int p(oldsymbol{x},oldsymbol{z}_{1:T}) doldsymbol{z}_{1:T} \ &\geq \mathbb{E}_{q_{oldsymbol{\phi}}(oldsymbol{z}_{1:T}|oldsymbol{x})} \left[\log rac{p(oldsymbol{x},oldsymbol{z}_{1:T})}{q_{oldsymbol{\phi}}(oldsymbol{z}_{1:T}|oldsymbol{x})}
ight] \end{aligned}$$

Extending the ELBO

- Omitting some steps
 - See "Understanding Diffusion Models: A Unified Perspective" by Calvin Luo for a nice walkthrough

$$\log p(\boldsymbol{x}) = \log \int p(\boldsymbol{x}, \boldsymbol{z}_{1:T}) d\boldsymbol{z}_{1:T}$$
$$\geq \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}_{1:T} | \boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z}_{1:T})}{q_{\boldsymbol{\phi}}(\boldsymbol{z}_{1:T} | \boldsymbol{x})} \right]$$
$$= \dots$$

Extending the ELBO

KL-Div between
Gaussians
$$\frac{1}{2} \left\{ \left(\frac{\sigma_0}{\sigma_1} \right)^2 + \frac{(\mu_1 - \mu_0)^2}{\sigma_1^2} - 1 + \ln \frac{\sigma_1^2}{\sigma_0^2} \right\}$$

$$\log p(\boldsymbol{x}) = \log \int p(\boldsymbol{x}, \boldsymbol{z}_{1:T}) d\boldsymbol{z}_{1:T}$$

$$\geq \mathbb{E}_{q_{\phi}(\boldsymbol{z}_{1:T}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}, \boldsymbol{z}_{1:T})}{q_{\phi}(\boldsymbol{z}_{1:T}|\boldsymbol{x})} \right]$$

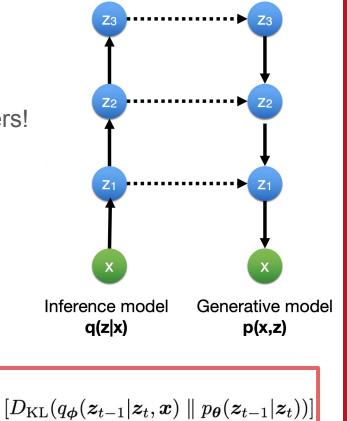
$$= \dots$$

$$= \underbrace{\mathbb{E}_{q_{\phi}(\boldsymbol{z}_{1}|\boldsymbol{x})} \left[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}_{1}) \right]}_{\text{reconstruction term}} - \underbrace{D_{\text{KL}}(q_{\phi}(\boldsymbol{z}_{T}|\boldsymbol{x}) \parallel p(\boldsymbol{z}_{T}))}_{\text{prior matching term}} - \sum_{t=2}^{T} \mathbb{E}_{q_{\phi}(\boldsymbol{z}_{t}|\boldsymbol{x})} \left[D_{\text{KL}}(q_{\phi}(\boldsymbol{z}_{t-1}|\boldsymbol{z}_{t}, \boldsymbol{x}) \parallel p_{\theta}(\boldsymbol{z}_{t-1}|\boldsymbol{z}_{t})) \right]$$

Consistency Term- Unstable Optimization!

Extending the ELBO

Hard to jointly learn hierarchical encoders and decoders!



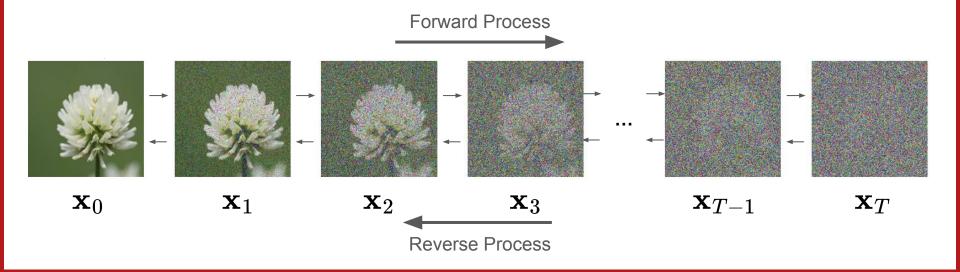
$$=\underbrace{\mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}_{1}|\boldsymbol{x})}\left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z}_{1})\right]}_{\text{reconstruction term}} - \underbrace{D_{\text{KL}}(q_{\boldsymbol{\phi}}(\boldsymbol{z}_{T}|\boldsymbol{x}) \parallel p(\boldsymbol{z}_{T}))}_{\text{prior matching term}} - \sum_{t=2}^{T} \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}_{t}|\boldsymbol{x})}\left[D_{\text{KL}}(q_{\boldsymbol{\phi}}(\boldsymbol{z}_{t-1}|\boldsymbol{z}_{t},\boldsymbol{x}) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{z}_{t-1}|\boldsymbol{z}_{t})\right]$$

Consistency Term- Unstable Optimization!

Denoising Diffusion Models

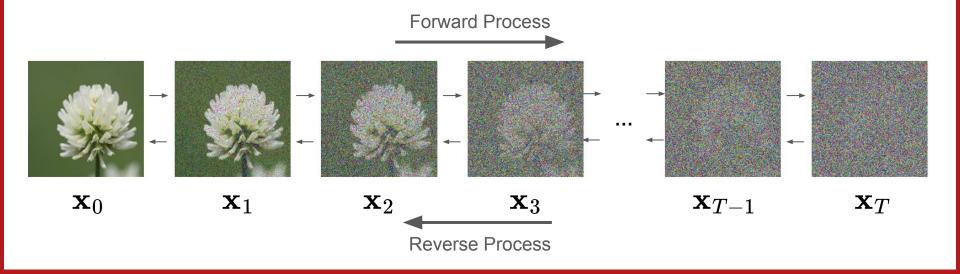
Denoising diffusion models consist of two processes:

- Forward diffusion process that gradually adds noise to input
- Reverse denoising process that learns to generate data by denoising



Cornell Bowers CIS Discuss:

• How to define the forward and reverse directions?

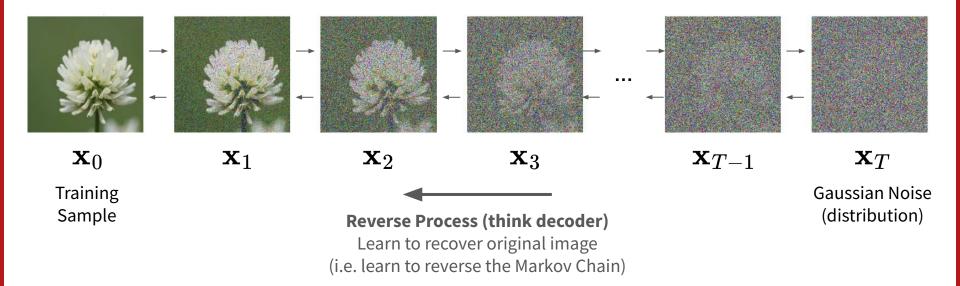


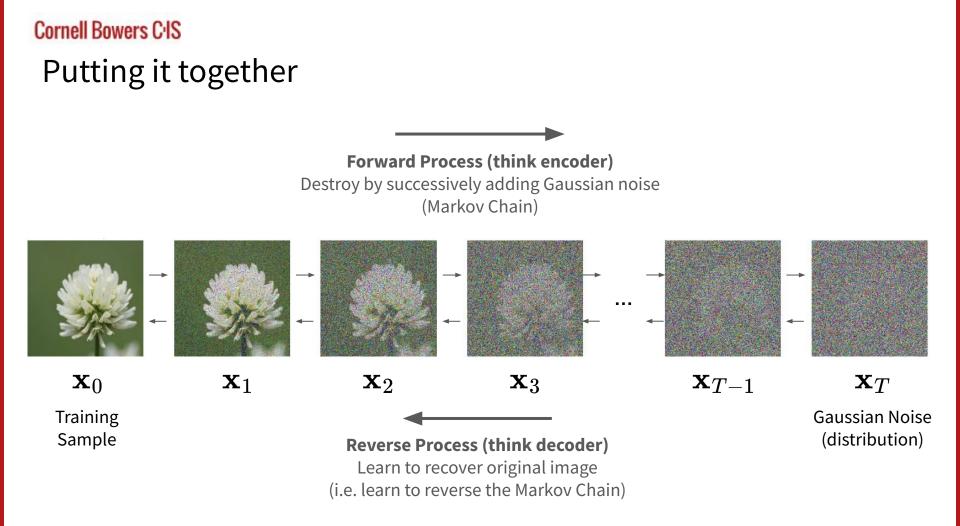
Forward Process: high level idea

Destroy by successively adding Gaussian noise (Markov Chain)

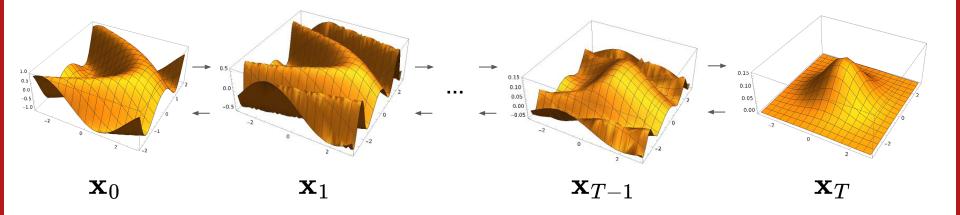


Reverse Process: high level idea



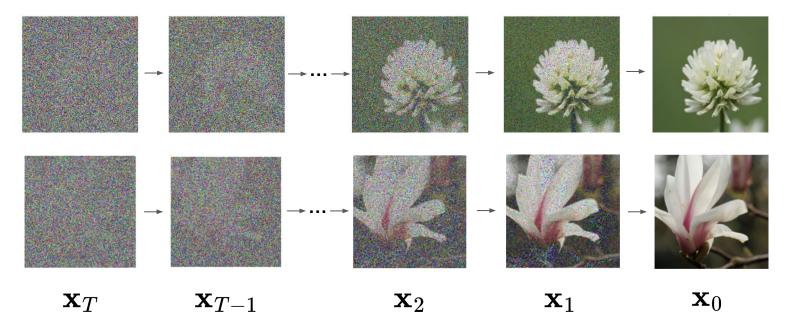


We define a mapping to Gaussian noise (forward process) Want to **learn the reverse mapping to generate data** (reverse process)



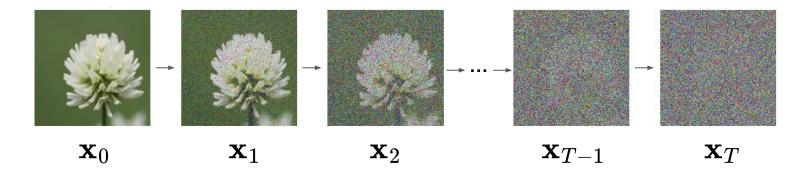
Diffusion Sampling

Different draws of initial noise lead to diverse of outputs



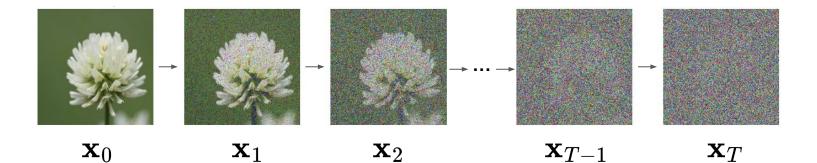
Forward Process Overview

- Destroys original image \mathbf{x}_0 by **successively adding Gaussian noise**
- Desired outcome: At step T , \mathbf{x}_T is a **pure Gaussian noise**
 - \circ i.e. the distribution we map the data manifold to



Details: Forward Process

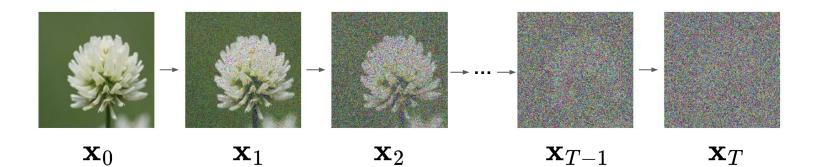
1. \mathbf{x}_0 sampled from some distribution



Details: Forward Process

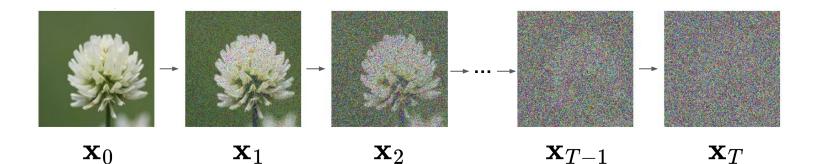
2. \mathbf{x}_t sampled from normal distribution conditioned on \mathbf{x}_{t-1} given by:

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - eta_t} \mathbf{x}_{t-1}, eta_t \mathbf{I}) \qquad \{eta_t \in (0, 1)\}_{t=1}^T$$



Details: Forward Process

 $\{\beta_t \in (0,1)\}_{t=1}^T$ is variance schedule (controlling **how** we move toward Gaussian noise)



Details: Forward Process

 \mathbf{x}_t sampled from normal distribution conditioned on \mathbf{x}_{t-1} given by:

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

Can we extend this to sampling \mathbf{x}_t in a closed form? We use the re-parametrization trick:

Let
$$\alpha_t \coloneqq 1 - \beta_t$$
 , and let $\epsilon_{t-1} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

$$\mathbf{x}_t = \sqrt{\alpha_t} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}_{t-1}$$

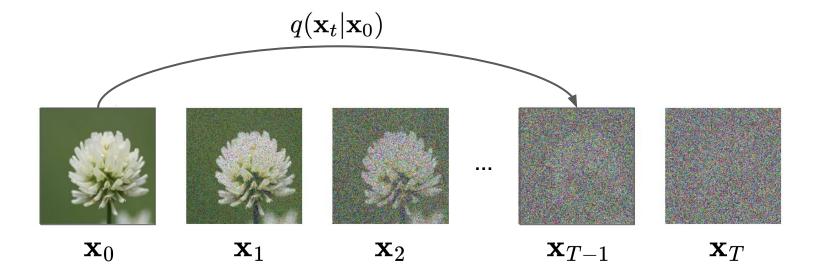
Details: Forward Process

Inductively, we can say

Details: Forward Process

Can sample \mathbf{x}_t in closed-form as $q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I})$

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \bar{\alpha}_t \in (0, 1)$$



Aside: Noise Schedules $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \bar{\alpha}_t \in (0, 1)$

- Define the noise schedule in terms of $\bar{\alpha}_t \in (0, 1)$
 - Some monotonically decreasing function from 1 to 0
- Cosine Noise schedule:

 $\bar{\alpha}_t = \cos(.5\pi t/T)^2$

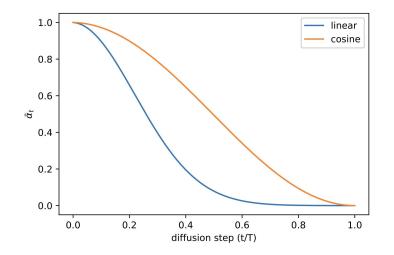
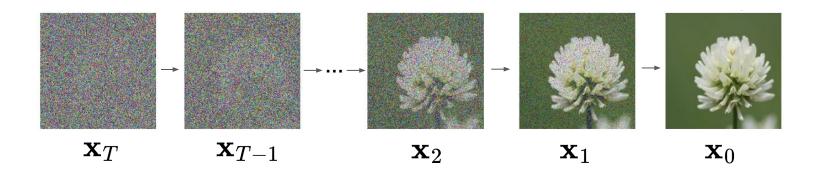


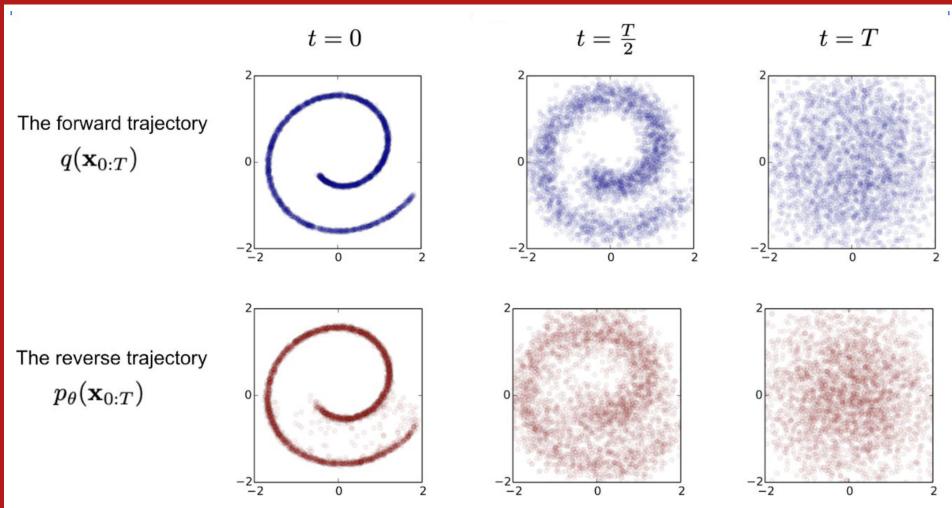
Figure 5. $\bar{\alpha}_t$ throughout diffusion in the linear schedule and our proposed cosine schedule.

Nichol, Alexander Quinn, and Prafulla Dhariwal. "Improved denoising diffusion probabilistic models." International conference on machine learning. PMLR, 2021.

Reverse Process Overview

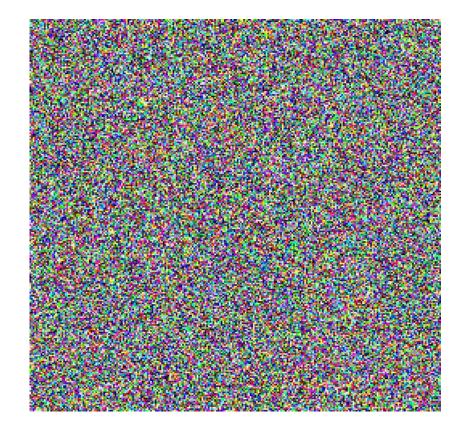
- "Learn to reverse what we just destroyed"
 - \circ ~ Learn time reversal of Markov Chain; we train a model for this
- Desired outcome: some \mathbf{x}_0 close to the original data distribution





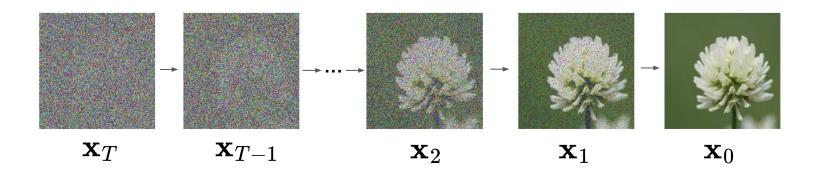
Sohl-Dickstein et al., 2015

Reverse process:



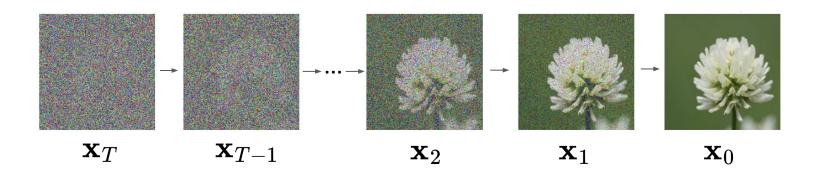
Details: Reverse Process

1. Ideally, sample from reversed conditional distribution $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$



Details: Reverse Process

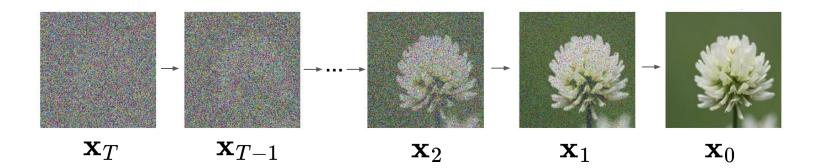
Problem: $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$ is **intractable** (can't compute easily)



Details: Reverse Process

Problem: $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$ is **intractable** (can't compute easily)

You need to use the entire dataset!

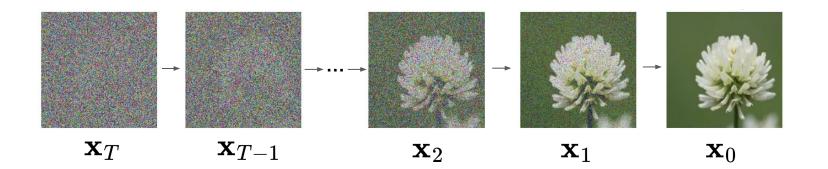


Details: Reverse Process

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

However: $q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)$ is tractable

Can reverse the forward process given the original data!



Details: Reverse Process

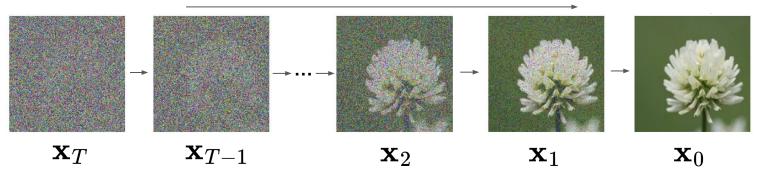
$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

However: $q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)$ is tractable

Can reverse the forward process given the original data!

Problem: Don't have any "original data" for inference

$$q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)$$

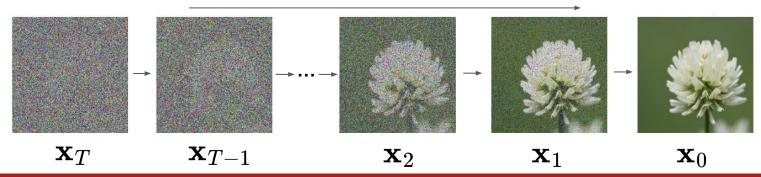


Cornell Bowers CIS Key Idea

We introduce a generative model to approximate the reverse process:

$$p(\mathbf{x}_T) = \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I}) \implies p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I}) \implies p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)$$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})$$



Cornell Bowers CIS Key Idea

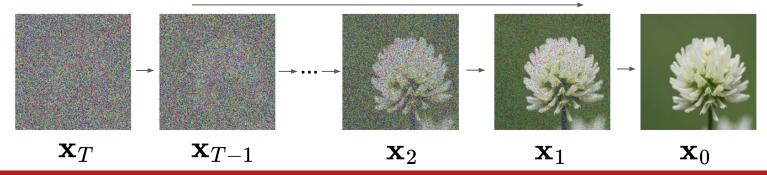
We introduce a generative model to approximate the reverse process:

$$p(\mathbf{x}_T) = \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$$

$$p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I}) \qquad \Rightarrow \qquad p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)$$

Learning Objective!
$$\mathbb{E}_{q(\boldsymbol{x}_t | \boldsymbol{x}_0)} \left[D_{\mathrm{KL}}(q(\boldsymbol{x}_{t-1} | \boldsymbol{x}_t, \boldsymbol{x}_0) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1} | \boldsymbol{x}_t)) \right]$$

 $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$



Training: Principled Derivation

Find the model that maximizes the likelihood of the training data

i.e. same as VAEs, variational inference; approximate the true posterior

Training Objective

- Bound the likelihood with the ELBO
 - Exactly like hierarchical VAEs

$$\log p(\boldsymbol{x}) \geq \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p(\boldsymbol{x}_{0:T})}{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \right]$$

$$= \underbrace{\mathbb{E}_{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1}) \right]}_{\text{reconstruction term}} - \underbrace{D_{\text{KL}}(q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0}) \parallel p(\boldsymbol{x}_{T}))}_{\text{prior matching term}} - \underbrace{\sum_{t=2}^{T} \mathbb{E}_{q(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})} \left[D_{\text{KL}}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t}) \right]}_{\text{denoising matching term}}$$

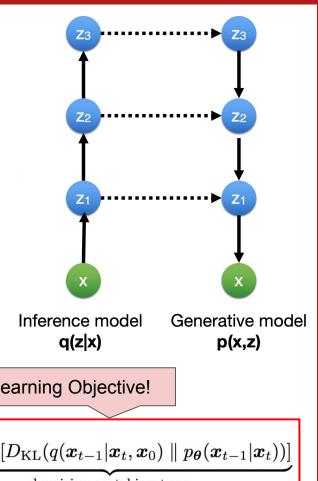
Cornell Bowers CIS Discuss:

Differences between diffusion models and hierarchical VAEs?

$$lnference model \mathbf{q}(\mathbf{z}|\mathbf{x}) \qquad Generative model \mathbf{q}(\mathbf{z}|\mathbf{x}) \qquad \mathbf{p}(\mathbf{x}, \mathbf{z})$$

$$log p(\mathbf{x}) \geq \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \left[log \frac{p(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \right] \qquad Learning Objective!$$

$$= \underbrace{\mathbb{E}_{q(\mathbf{x}_{1}|\mathbf{x}_{0})} \left[log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1}) \right]}_{reconstruction term} - \underbrace{D_{KL}(q(\mathbf{x}_{T}|\mathbf{x}_{0}) \parallel p(\mathbf{x}_{T}))}_{prior matching term} - \sum_{t=2}^{T} \underbrace{\mathbb{E}_{q(\mathbf{x}_{t}|\mathbf{x}_{0})} \left[D_{KL}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})) \right]}_{denoising matching term}$$



Training Objective

- Bound the likelihood with the ELBO
 - Exactly like VAEs

$$\log p(\boldsymbol{x}) \geq \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \left[\log \frac{p(\boldsymbol{x}_{0:T})}{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0})} \right]$$

$$= \underbrace{\mathbb{E}_{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1}) \right]}_{\text{reconstruction term}} - \underbrace{D_{\text{KL}}(q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0}) \parallel p(\boldsymbol{x}_{T}))}_{\text{prior matching term}} - \underbrace{\sum_{t=2}^{T} \mathbb{E}_{q(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})} \left[D_{\text{KL}}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t}) \right]}_{\text{denoising matching term}}$$

where $q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)$ is the tractable posterior distribution: $q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \mathbf{I}),$

where
$$\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{1}{\sqrt{1-\beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon \right)$$
 and $\tilde{\beta}_t := \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t} \beta_t$

Parameterizing the Denoising Model

Since both $q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)$ and $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ are Normal distributions, the KL divergence has a simple form:

$$L_{t-1} = D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)||p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)) = \mathbb{E}_q\left[\frac{1}{2\sigma_t^2}||\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) - \mu_{\theta}(\mathbf{x}_t, t)||^2\right] + C$$

Recall that $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{(1 - \bar{\alpha}_t)} \epsilon$. Ho et al. NeurIPS 2020 observe that:

$$\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{1}{\sqrt{1 - \beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon \right)$$

They propose to represent the mean of the denoising model using a *noise-prediction* network:

$$\mu_{\theta}(\mathbf{x}_{t}, t) = \frac{1}{\sqrt{1 - \beta_{t}}} \left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right)$$

With this parameterization

$$L_{t-1} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\frac{\beta_t^2}{2\sigma_t^2 (1 - \beta_t)(1 - \bar{\alpha}_t)} || \epsilon - \frac{\epsilon_\theta(\sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \ \epsilon, t)}{\mathbf{x}_t} ||^2 \right] + C$$

http://cs231n.stanford.edu/slides/2023/lecture_15.pdf

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Training Objective Weighting

ELBO objective leads to a specific regression weight at each time step:

$$L_{t-1} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \begin{bmatrix} \frac{\beta_t^2}{2\sigma_t^2 (1 - \beta_t) (1 - \bar{\alpha}_t)} ||\epsilon - \epsilon_\theta (\sqrt{\bar{\alpha}_t} |\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} |\epsilon, t)||^2 \end{bmatrix}$$

$$\lambda_t$$
Approaches zero!

However, this weight is often very large for small t's

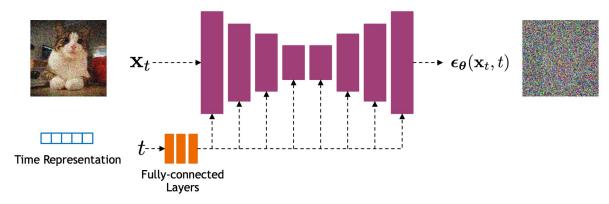
Ho et al., 2020 proposed the following objective to improve perceptual quality:

$$L_{\text{simple}} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), t \sim \mathcal{U}(1, T)} \left[||\epsilon - \epsilon_{\theta} (\underbrace{\sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}}_{\mathbf{x}_t} \epsilon, t)||^2 \right]$$

What Network Architecture to Use For $\epsilon_{ heta}$?

People often use U-Nets with residual blocks and self-attention layers at low resolutions

Has same input and output image dimensions



Time representation: sinusoidal positional embeddings

Inject time embedding throughout the network (e.g. additive positional embedding)

http://cs231n.stanford.edu/slides/2023/lecture_15.pdf

Cornell Bowers CIS Diffusion Results

Outperforms prior generative models when using the simplified training objective

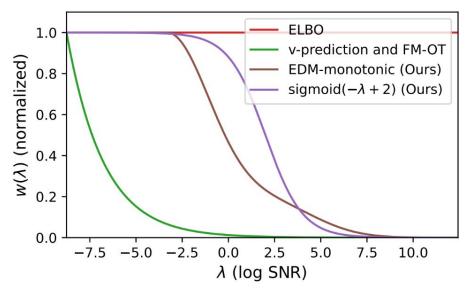
ELBO objective performs worse!

	Model	IS	FID
	Gated PixelCNN [59]	4.60	65.93
	Sparse Transformer [7]		
	PixelIQN [43]	5.29	49.46
	EBM [11]	6.78	38.2
	NCSNv2 [56]		31.75
	NCSN [55]	$8.87 {\pm} 0.12$	25.32
	SNGAN [39]	$8.22 {\pm} 0.05$	21.7
ELBO	SNGAN-DDLS [4]	$9.09 {\pm} 0.10$	15.42
	StyleGAN2 + ADA (v1) [29]	9.74 ± 0.05	3.26
I \mathbb{E} $\left[\prod_{n=1}^{\infty} \left(\sqrt{\frac{1}{2}} - \frac{1}{2} + \sqrt{\frac{1}{2}} \right) \right]^2$	Ours (L, fixed isotropic Σ)	$7.67 {\pm} 0.13$	13.51
$L_{\text{simple}} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(0, \mathbf{I}), t \sim \mathcal{U}(1, T)} \left[\epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \ \epsilon, t) ^2 \right]$	Ours (L_{simple})	$9.46 {\pm} 0.11$	3.17
$\stackrel{^{\vee}}{\mathbf{x}_{t}}$	Ho et al. 2020		

Training Objective Weighting

- ELBO forces the network to model imperceptible details
 - Less modeling capacity dedicated to perceptible details (global image structure, etc.)
- If you care about perceptual quality:
 - Decrease the loss weighting for low noise levels

 $\mathbf{x}_{t} = \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \epsilon, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\operatorname{SNR}(t) = \bar{\alpha}_{t} / (1 - \bar{\alpha}_{t})$ $\log(\operatorname{SNR}(t)) = \log(\bar{\alpha}_{t} / (1 - \bar{\alpha}_{t}))$



Kingma, Diederik, and Ruiqi Gao. "Understanding diffusion objectives as the ELBO with simple data augmentation." Advances in Neural Information Processing Systems 36 (2023).

Connection to VAEs

Diffusion models can be considered as a special form of hierarchical VAEs.

However, in diffusion models:

- The inference model is fixed: easier to optimize
- The latent variables have the same dimension as the data.
- The ELBO is decomposed to each time step: fast to train
- Can be made extremely deep (even infinitely deep)
- The model is trained with some reweighting of the ELBO
 - Can trade off likelihood for improved perceptual quality



Alternative Diffusion Parameterization: Data Prediction

Can also view the diffusion network as learning to predict the original data

$$\mathbf{x}_{t} = \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \epsilon$$
$$\implies \mathbf{x}_{0} = \frac{\mathbf{x}_{t} - \sqrt{1 - \bar{\alpha}_{t}} \epsilon}{\sqrt{\bar{\alpha}_{t}}}$$
$$\implies \mathbf{x}_{\theta}(\mathbf{x}_{t}, t) = \frac{\mathbf{x}_{t} - \sqrt{1 - \bar{\alpha}_{t}} \epsilon_{\theta}(\mathbf{x}_{t}, t)}{\sqrt{\bar{\alpha}_{t}}}$$

Alternative Diffusion Parameterization: Data Prediction

Can also view the diffusion network as learning to predict the original data

$$\mathbf{x}_{\theta}(\mathbf{x}_{t}, t) = \frac{\mathbf{x}_{t} - \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t)}{\sqrt{\bar{\alpha}_{t}}}$$

Diffusion training objective: $\mathbb{E}_{q(\boldsymbol{x}_t|\boldsymbol{x}_0)} \left[D_{\mathrm{KL}}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)) \right]$

For sampling, want $q(x_{t-1}|x_t, x_0)$, but don't have access to the original data

Use our estimate of the original data, $\mathbf{x}_{\theta}(\mathbf{x}_t, t)$, to sample:

$$p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) = q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \mathbf{x}_{\theta}(\mathbf{x}_t, t)) \approx q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \mathbf{x}_0)$$

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Training Algorithm

Repeat until convergence

- $1. \ \mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 2. $t \sim U\{1, 2, \dots, T\}$
- $3.~\epsilon \sim \mathcal{N}(0,1)$

- ← Sample original image from image distribution
- ← Sample random time step uniformly
- ← Sample Gaussian noise
- $\text{4. Optimizer step on } L(\theta) = \mathbb{E}_{t,\mathbf{x}_0,\epsilon}[||\epsilon-\epsilon_\theta(\mathbf{x}_t,t)||^2]$
 - ← Model predicts noise applied at time step t and calculate loss

Sampling Algorithm

 $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ ϵ Sample pure Gaussian noise For $t = T, T - 1 \dots, 1$ ← Sample Gaussian noise to $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$ apply to image $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z} \quad \leftarrow \text{Predict noise applied to}$ image and remove that noise Return \mathbf{x}_0 $p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) = q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \mathbf{x}_{\theta}(\mathbf{x}_t, t))$

Generative Modeling

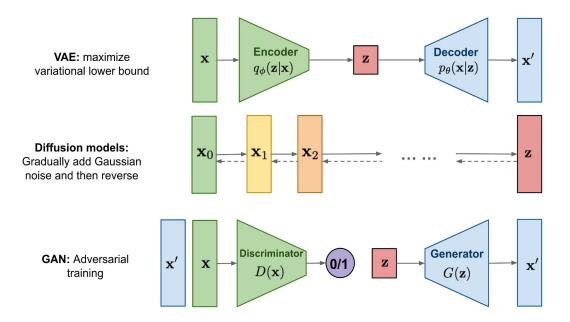
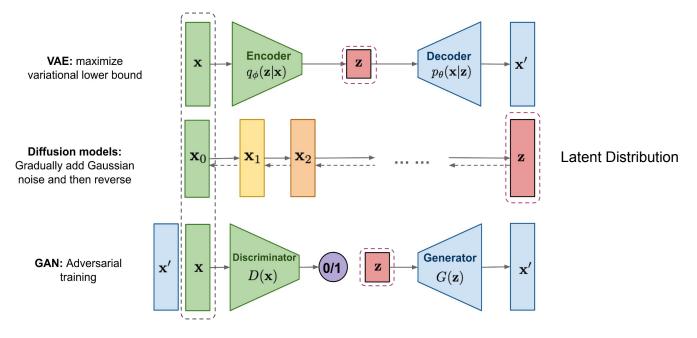


Image Source

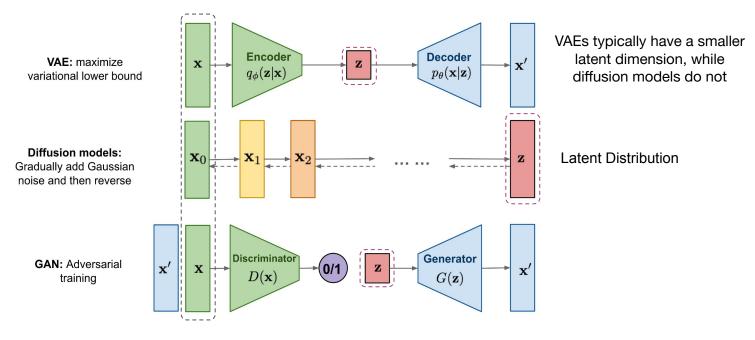
Generative Modeling



Target Distribution

Image Source

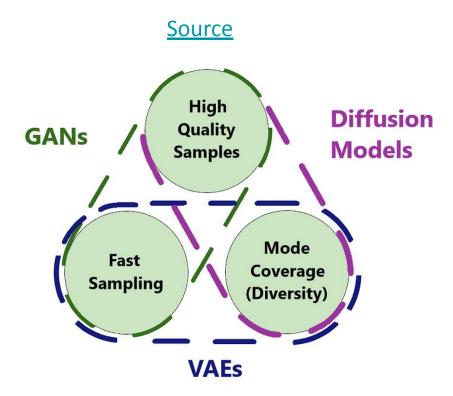
Generative Modeling



Target Distribution

Image Source

Diffusion Models vs. VAEs vs. GAN



Stable Diffusion Demo!

https://huggingface.co/spaces/stabilityai/stable-diffusion

Sample input: "messi as a real madrid player"

Recap

- Can bound the likelihood of observed data (i.e. the evidence) with the Evidence Lower Bound (i.e. the ELBO)
- Can learn generative models by maximizing the ELBO
 - VAEs, hierarchical VAEs, Diffusion models
- Diffusion models are a special case of hierarchical VAEs
 - The encoder is fixed to a linear Gaussian model
 - Only learn the decoder
 - Easy to train!
- Learning objective decomposed to each timestep
 - Can be made extremely deep!
 - Can focus on higher noise levels to improve perceptual quality!
- Limitation:
 - Can require many sampling steps for good quality