

Discriminative Models

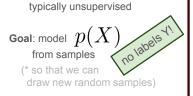
typically supervised

Goal: model p(Y|X)from samples of p(X,Y) (* so that we can list most likely labels)

Questions:

- Does one reduce to the other?
- Which is more difficult?

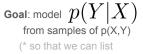
Generative Models



Cornell Bowers C·IS

Discriminative Models

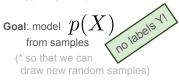
typically supervised



most likely labels)

Generative Models

typically unsupervised



Examples:

- GANs + variants
- Normalizing Flow Models
 Variational Autoencoders
- Diffusion Models

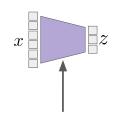
Cornell Bowers C·IS

Dimensionality Reduction

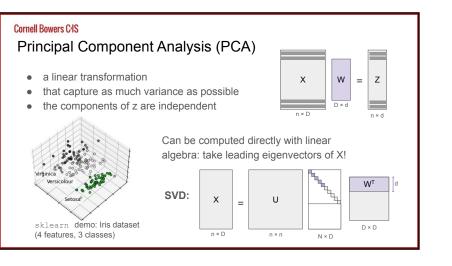
Want to compress image $x \in \mathbb{R}^D$ to code $z \in \mathbb{R}^d$

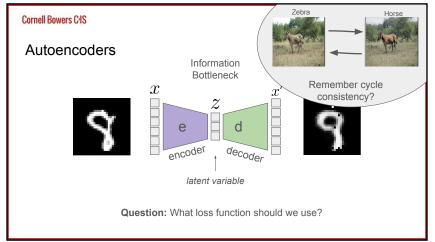
for the purposes of

- visualization
- extracting important features (for downstream tasks)
- a more useful space, where geometry has semantic meaning



What properties should this mapping have?

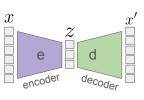




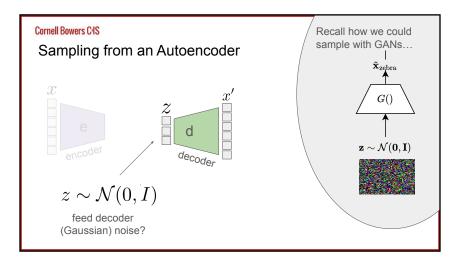
Reconstruction Loss, first attempt

• "the obvious loss"

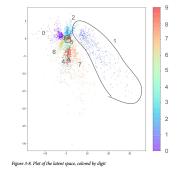
$$\sum_{x \in \mathcal{D}} (x - x')^2_{\text{where } x' = e(d(x))}$$



The Result: an Autoencoder. [Kramer, 1991]



Autoencoder trained on MNIST: latent space



Not a very nice representation...

- no symmetries between digit representations
- lots of empty space

Question:

What does this mean for sampling?

Cornell Bowers C·IS

What's needed is some kind of "regularization"

to "encourage" the encoder to have "nice properties"...

- Contractive Autoencoders [2011]
- Sparse Autoencoder [2013]
- Variational Autoencoders [2014]

Cornell Bowers C·IS

A Probabilistic Perspective

Building Blocks:

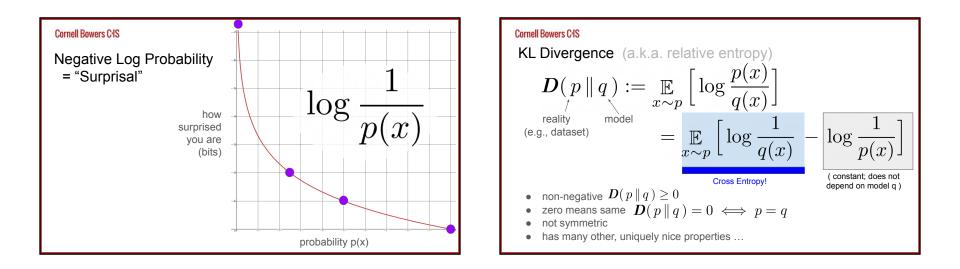
- Conditional and marginal probabilities
- Surprisal / Negative Log Likelihood
- Relative Entropy / KL Divergence

Cornell Bowers C·IS

Conditional and Marginal Probabilities

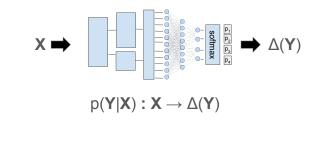
$$p(X,Y) = p(Y|X)p(X)$$

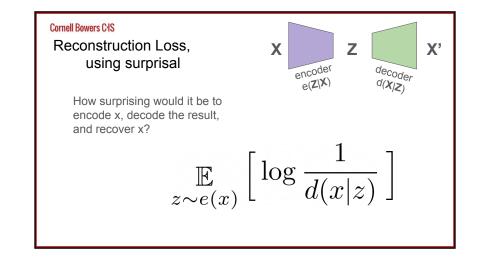
$$p(X) = \int p(X, y) \, \mathrm{d}y$$

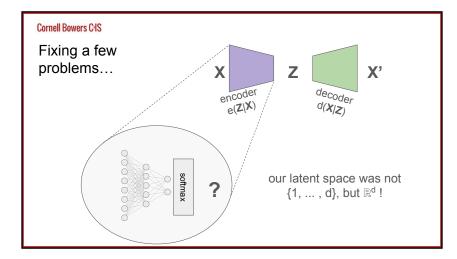


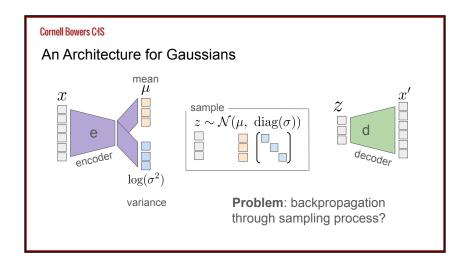
Neural Networks as Conditional Probabilities

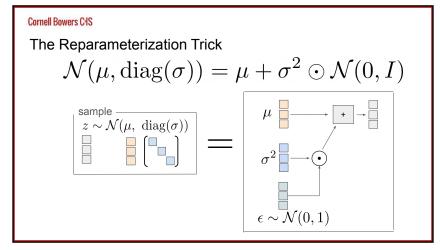
A network with a softmax encodes a conditional probability distribution



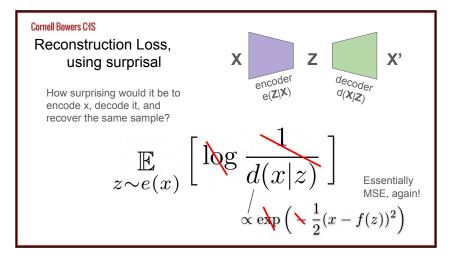








Cornel Bowers CVS The Reparameterization Trick $\begin{array}{c} x \\ \hline \\ e \\ encoder \\ \log(\sigma^2) \\ \\ sample \\ \epsilon \sim \mathcal{N}(0,1) \end{array}$



Cornell Bowers C·IS

We're back at an autoencoder, but probabilistic

The upshot: we can now add a regularization term

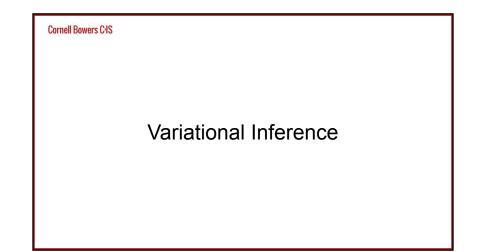
 $D(e(Z|x) \parallel p(Z))$

Want each encoding

... to match a prior (e.g., a standard Gaussian)

Questions:

Does this have a connection to PCA? Is there a conceptual problem with this regularization?



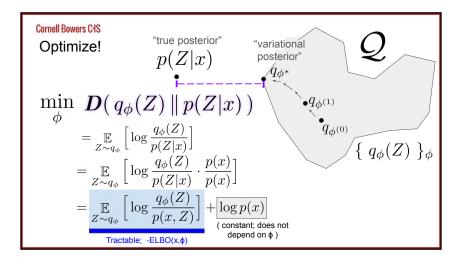
Motivating VAEs

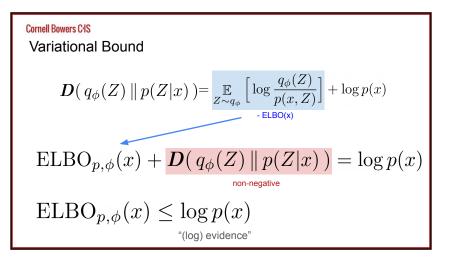
- Have joint model p(X, Z)
- observe x (but not z);

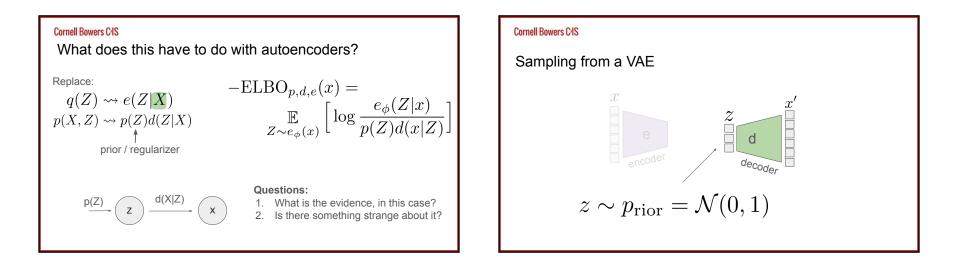
- want to calculate posterior
$$p(Z|x) = rac{p(x,Z)}{p(x)}$$

• which requires
$$p(x) = \int p(x, z) \, dz$$

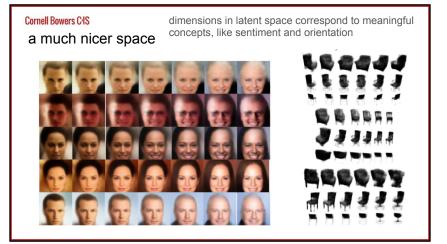
- But the integral is often intractable!
 - so, instead ...





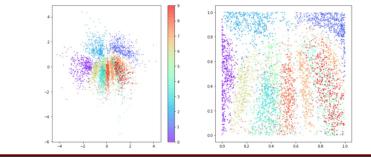


Cornell Bowers C4S	q q	99	99	99	99	4	30	30								_	_			
a much nicer space	9	9	9	4	4	4	2	10	6	6	6			-		_	-	õ		
•	9	9	9	4	4	đ	đ	a .	d a				6	Υ.	×.	-	-	00		0
	9	9	9	1	ar a	1	3	2	10	ർറ	d) d				00	0	0	~		2
	9	4	ą	r G	3	3	3	2	2	2	-	-	Ξ.		τ.	õ	õ	0	6	6
can smoothly interpolate digits in	9	9	4	3	3	(D	60	2	2	2	2	3	\$	6	G	0	0	0	0	0
a meaningful, digit-y kind of way	9	9	9	1 2	ŝ	ŝ	Ω,	63	2	2	2	3			Υ.	6	0	<u> </u>	0	2
	9	7	7	2 40	00	0	0	10 00	60 GC	10 (N	2	3	-			6	0	0	2	2
	9	7 9	7	5	8	9 0	0.00	D GC	D GC	U ec	a e	3					4	0	0	6
	9	9	9	9	5	5	5	5	3	3	3	3	G	6	6	6	6	0	0	0
	9	9	9	9	8	5	5	5	5	5	5	5	5	6	6	6	6	0	0	0
	7	9	9	7	2	8	8	5	5	5	5	5	1			1		6	2	2
	7	7	7	7	2	8	8	8	8	50	5	5	1	5	6	6	6	0		2
	9	7	7	7	2	8	8	8	8	8	8	8	5	5	5	5	ŝ	6	1	0
	9	7	7	8	8	8	8	8	8	8	8	8	8	5	5	5	ŝ.	\$	1	1
	Ĩ	١	1	Î	1	I	1	1	1	1	1	1	1	1	/	1	1.	1.	1.	1



Back to MNIST: Visualizing latent space again

VAE Latent space, note the distribution is centered, and each digit has an equal portion

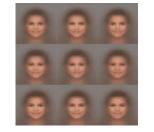


Cornell Bowers C·IS

The Biggest Drawback of VAEs

• Out of the box, generated images can be blurry. **Question:** Why?

VAE v. GAN



https://borisburkov.net/2022-12-31-1/

Cornell Bowers C·IS

Hierarchical VAEs

The generative process is modeled as a Markov chain, where each latent \boldsymbol{z}_t is generated only from the previous latent \boldsymbol{z}_{t+1}

