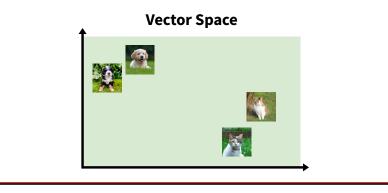


Logistics

- HW3 is due next week
- We have a feedback form (due Friday, March 8th)
- Project proposal due today
 - You can use slip days
 - \circ $\hfill \hfill \hf$
 - Look for reported training hardware and training times
 - Choose papers from ICML, ICLR, NeuRIPS, CVPR, ECCV, ACL, EMNLP, NAACL

Cornell Bowers C·IS

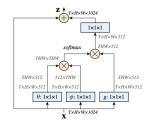
Use self-supervised learning to learn embeddings for images



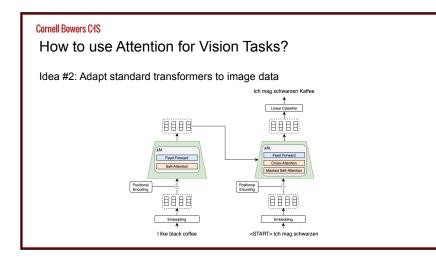
Cornell Bowers CIS

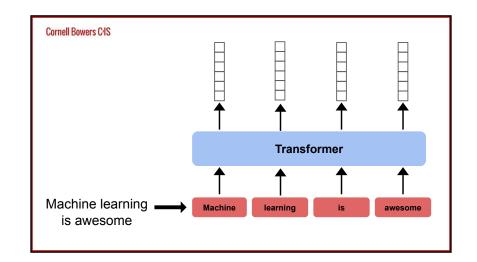
How to use Attention for Vision Tasks?

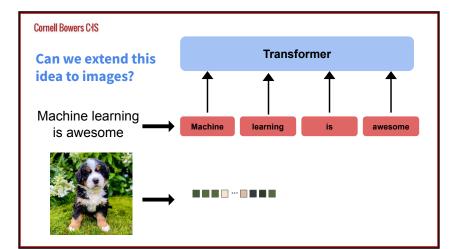
Idea #1: Add attention to existing CNNs

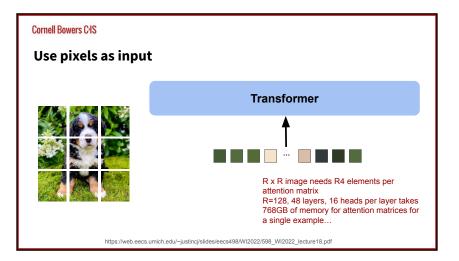


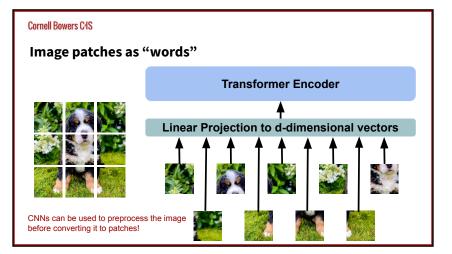
Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7794-7803).

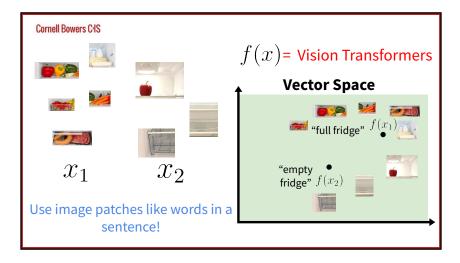


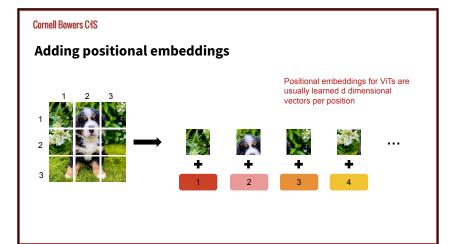


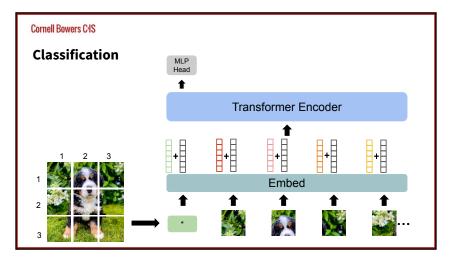


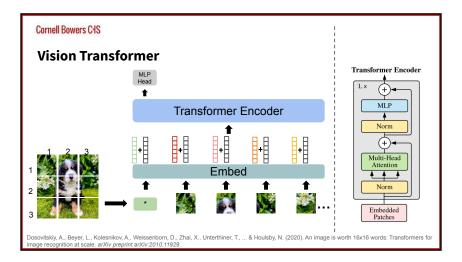


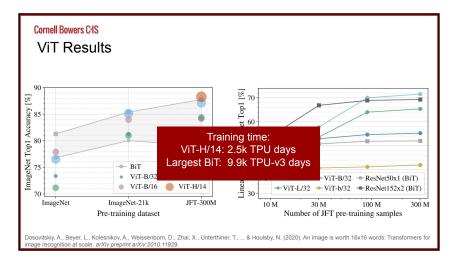












ViT Summary

Model:

- Model is almost identical to BERT
- Replace words with PxP pixel image patches, $P \in \{14, 16, 32\}$ (no overlap)
- Each patch is embedded linearly into a vector of size 1024
- 1D positional embeddings

Training:

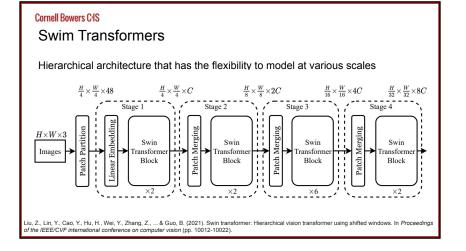
- For pre-training, optimize for image classification on large supervised dataset (e.g. ImageNet 21K, JFT -300M)
- For fine-tuning, learn a new classification head on a small dataset (e.g. CIFAR-100)

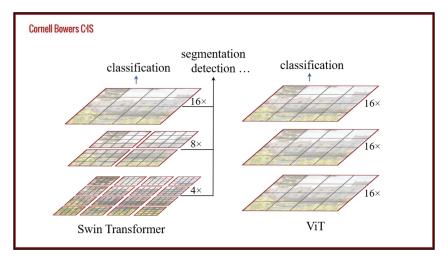
Cornell Bowers C·IS

ACTIVITY: When do ViTs outperform CNNs, and vice versa?

Think about what you know about transformers - what are some of their drawbacks?

When is it "worth it" to use transformers instead of just CNNs?

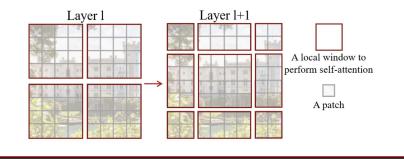




Cornell Bowers C^IS

Shifted Window attention

Linear computational complexity with respect to image size



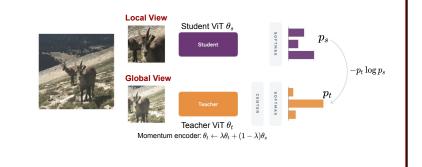
Cornell Bowers C^IS

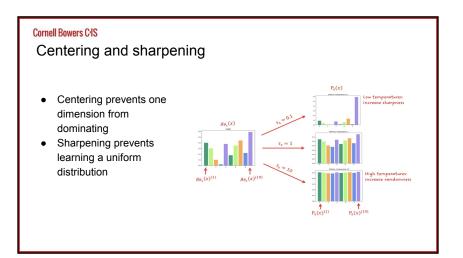
Performance

	method	image size	#param.	FLOPs	throughput (image / s)	ImageNet top-1 acc.
	R-101x3 [38]	384 ²	388M	204.6G	-	84.4
	R-152x4 [38]	480^{2}	937M	840.5G	-	85.4
-	ViT-B/16 [20]	384 ²	86M	55.4G	85.9	84.0
	ViT-L/16 [20]	384 ²	307M	190.7G	27.3	85.2
	Swin-B	224^{2}	88M	15.4G	278.1	85.2
	Swin-B	384 ²	88M	47.0G	84.7	86.4
	Swin-L	384 ²	197M	103.9G	42.1	87.3

Cornell Bowers C^IS

Self-Supervised Vision Transformers (DiNO)

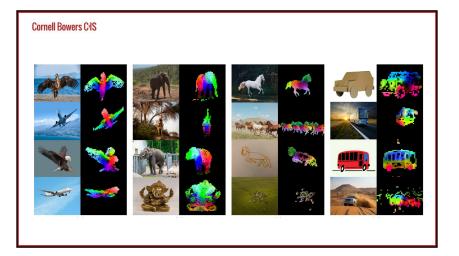


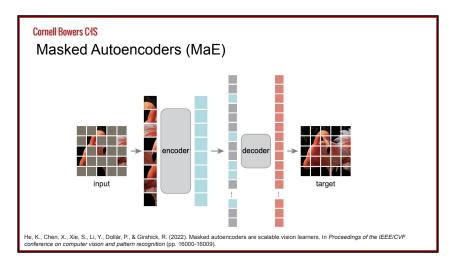


Cornell Bowers CIS DINO v2

	INet-1k k-NN	INet-1k linear
iBOT	72.9	82.3
+(our reproduction)	$74.5 \uparrow 1.6$	$83.2 \uparrow 0.9$
+LayerScale, Stochastic Depth	$\textbf{75.4} \uparrow 0.9$	$82.0 \downarrow 1.2$
+128k prototypes	$\textbf{76.6} \uparrow 1.2$	$81.9 \downarrow 0.1$
+KoLeo	$\textbf{78.9} \uparrow \textbf{2.3}$	$82.5 \uparrow 0.6$
+SwiGLU FFN	$78.7 \downarrow 0.2$	$\textbf{83.1} \uparrow 0.6$
+Patch size 14	$78.9 \uparrow 0.2$	$\textbf{83.5} \uparrow 0.4$
+Teacher momentum 0.994	$79.4 \uparrow 0.5$	$\textbf{83.6} \uparrow 0.1$
+Tweak warmup schedules	$80.5 \uparrow 1.1$	$\textbf{83.8} \uparrow 0.2$
+Batch size 3k	$81.7 \uparrow 1.2$	$84.7 \uparrow 0.9$
+Sinkhorn-Knopp	81.7 =	84.7 =
+Untying heads $=$ DINOv2	$82.0 \uparrow 0.3$	$84.5 \downarrow 0.2$

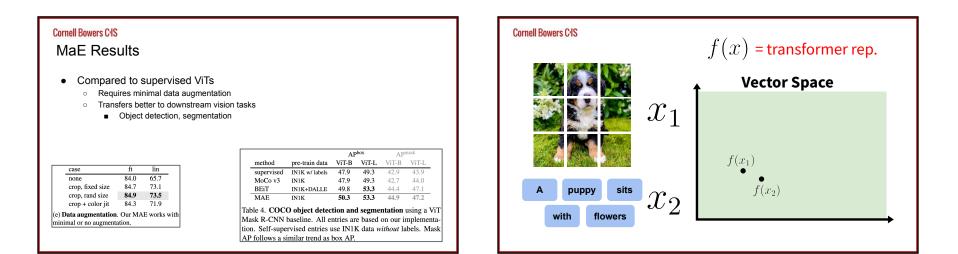
Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., ... & Bojanowski, P. (2023). Dinov2: Learning robust visual features without supervision. arXiv preprint arXiv:2304.07193.



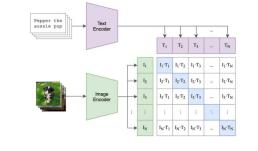


Discuss: BERT is trained with cross entropy loss. Can you do the same with MaE or should you use a different loss?

Cornell Bowers C·IS



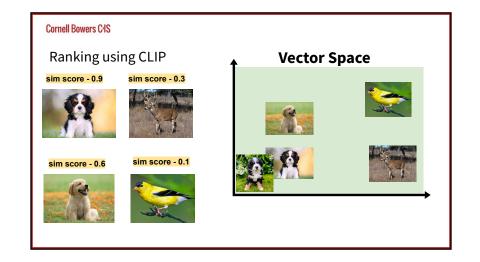
CLIP (Contrastive Language-Image Pre-training)



Conde, M. V., & Turgutlu, K. (2021). CLIP-Art: Contrastive pre-training for fine-grained art classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3956-3960).

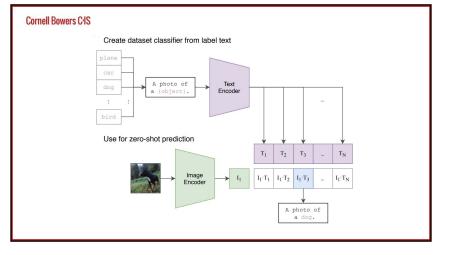
Cornell Bowers CHS Discuss: How can you train this model?

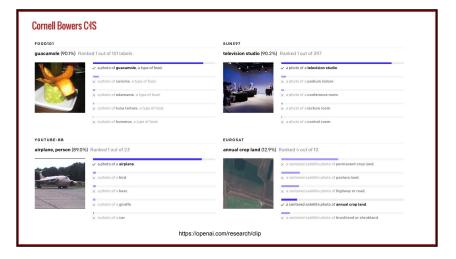
Cornell Bowers C·IS	
	<pre># image_encoder - ResNet or Vision Transformer # text_encoder - CBOW or Text Transformer # I[n, h, w, c] - minibatch of aligned images # T[n, 1] - minibatch of aligned texts # W_i1[d_i, d_e] - learned proj of image to embed # W_t[d_t, d_e] - learned proj of text to embed # t - learned temperature parameter</pre>
	<pre># extract feature representations of each modality I_f = image_encoder(I) #[n, d_i]</pre>
	 Trained on 256 V100 GPUs for two weeks on 400 million (image, text pairs) On AWS, this would cost at least 200k dollars
	<pre># scaled pairwise cosine similarities [n, n] logits = np.dot(I_e, T_e.T) * np.exp(t)</pre>

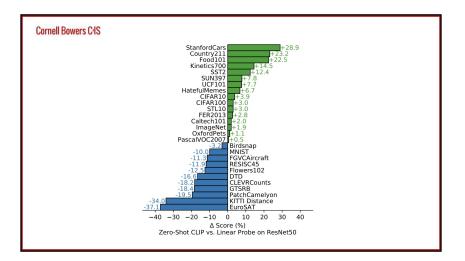


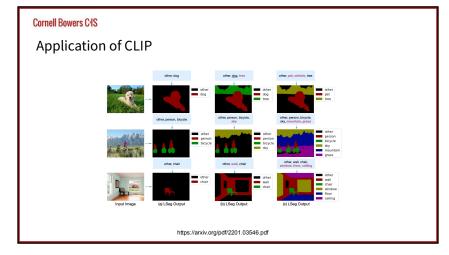
Clip demo

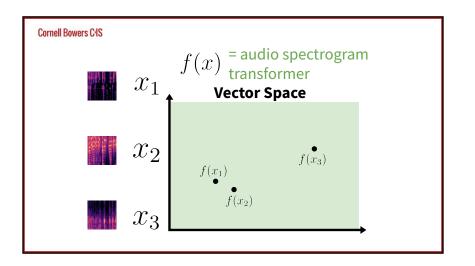
https://huggingface.co/spaces/vivien/clip

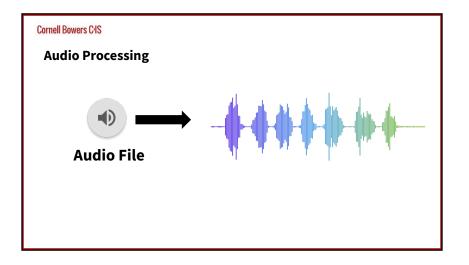






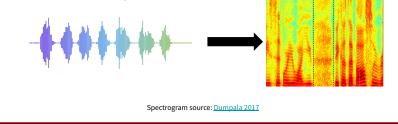


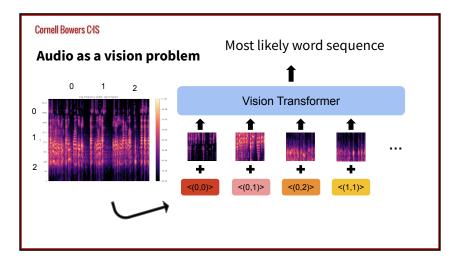




Spectrogram:

- Energy, pitch, fundamental frequency
- Decomposes signal into frequencies and their corresponding amplitudes





Cornell Bowers C·IS

Review

- Transformers can be used for vision tasks
- Swin transformers can be used for learning features at different scales
- Self-supervised learning is also helpful for transformer backbone vision models
 - \circ ~ Dino and MAE both learn very good embeddings
- Using transformer models for images and text helps build multi-modal models
 like CLIP