Iy
Cornell Bowers CIS
College of Computing and Information Scie

Deep Learning

Week:[06]: [GNNS]

Cornell Bowers C1S
Logistics

e HW2 is due today
o One extra slip day because of huggingface maintenance
o Run the cells in the coding assignment
o Turn off GPUs after using

e Project Proposal is due March 7
HW 3 will be released at the end of the week
We won't release HW solutions

Change in office hours
o Zach’s office hours will be 4-5 on Wednesday'’s (instead of 6-7pm)

o Varsha’s office hours will be 1-2pm Tuesday’s (instead of 9-10am)

Cornell Bowers C1S

What are Graphs?

Graphs are a general language for describing and analyzing entities with

relations/interactions

Molecule Knowledge Graph

Cornell Bowers C1IS

What are Graphs?

Graphs = Nodes + Edges

Molecule Knowledge Graph

Cornell Bowers C1S
Graph: Directed vs Undirected

How the edges link the nodes allows us to distinguish between undirected graphs
vs directed graphs

Graph G with 5 nodes Graph G with 6 nodes
. °
Graph G with 3 nodes 4 A1
What we will A S
focus on now . .
5
3 ®
4
6
-~
° Undirected
Directed
Examples: Examples:
Q Phone Calls Q Academic collaborations

O Following on Twitter Q Friendships on Facebook

Cornell Bowers C1S

Adjacency Matrix - A

Arepresents the edges in a given graph

AI.J. =1if an edge exists between nodes i and j, else O

Cornell Bowers C1S
Degree Matrix - D

D is a diagonal matrix, where each diagonal entry
represents the degree of each node in a given graph

Dl.'/. = degree(i)

= = O O O
= O R O O O
o = = O O O

O O R M Rk O
o O O = O =
O O O O = =

Cornell Bowers C1IS

GraphML vs NLP vs CV

The cat sat on the mat.
-> No spatial locality (unlike grids)

000000 -> No rank ordering or fixed reference point

Cornell Bowers C1S

Why Do We Care About Learning on Graphs?

There are many different settings where we might care about learning on graphs:

Graph embedding

. Community Detection ~ Graph Embeddin, Graph Generation
Graph generation Y b S e

e Graph classification Graph Classification Node Classification Link Prediction
e Node classification 2

e Link prediction 3T 2

e Community detection ? El? K b ¥

N ?

[]

RN}

, .\
U 0.2
\, fe N ? 01 ?
= \ |07 =
/ 0.2
2 ,) e T 0.9,
(N

\,
'~

=N, "o

Cornell Bowers C1S
Representation Learning > Feature Engineering

Learning
Algorithm

Structured

Prediction
Features

Downstream
prediction task

Feature engineering
(node-level, edge-level, graph-
level features)

Cs224w (Jure Leskovec)

Cornell Bowers C1S

Representation Learning + Classifier

(3)=(2)
I NS
@/ @

/

Trajectory : 1

Cornell Bowers C1IS

Map each node to a low-dimensional vector!) —

/ \\u |

original network embedding space

Node v

ENC) Z7]

__ d-dimensional embedding

Cs224w (Jure Leskovec)

Cornell Bowers C1S

Example Graph mapped into 2 dimensions

(a) Input: Karate Graph

7 LN J
-06
® og .
08| @pg ® °n
e - 4
-10 L] []
&
—12l @
..
~14
-16
-18 »

(b) Output: Representation

Cornell Bowers C1S

Classify Embeddings!

encode node
]
u

EmbedtMg

Zy

°
- °
o °
°
o

o

Layer Layer Layer

Classification

Cornell Bowers CIS
Brief Review: word2vec

pandalore
o pceth stac

sopane pren S0t gl

pooky 2

Yundy — Vade) —

odgnsokd™ ™ Rey rinn BegeEnoninePeIN
OacYgnan Luke <IRPcppenpacca

Can we do this on
graphs?

(words close in sentences = close in embedding space)

T “During the Battle of Endor, the Death Star II's energy
| shield was destroyed...
ww o wow w
List of “In the third film, Anakin becomes Vader when..."
sentence:

“Samuel L Jackson portrayed Mace Windu in the
prequel trilogy...”

Cornell Bowers C1IS

DeepWalk: word2vec For Graphs

This is exactly the same optimization as word2vec, but we instead optimize over

sequences of random walks on a graph.

<

@7\,,\7 steps ||| step
9 T Step 5!
— S

Given a graph and a starting
point, we selecta neighbor of
it at random, and move to this
neighbor; then we select a
neighbor of this point at
random, and move toiit, etc.
The (random) sequence of
points visited this way is a
random walk on the graph.

Cornell Bowers Ct

Example:

DeepWalk selects the next node to traverse to in
each random walk purely at random (unbiased)

Nodes that are close together in the random walk

sequence should be embedded closer together
in the embedding space!

These are the “sentences” that we generate!

RGIJO»\ uun“(:

Cornell Bowers C1S
node2vec: The Introduction of Bias...

node2vec = DeepWalk + control over local vs global exploration (via
two additional hyperparameters that we won't discuss in detail)

Breadth First Search (BFS) {s1, s2, s3} Local microscopic view Homophily
Depth First Search (DFS) {s4, s5, s6} Global macroscopic view Structural equivalence

Grover and Leskovec., ACM SIGKDD, 2016

Cornell Bowers C1S

GRAPH NEURAL NETWORKS

graph convolution i
dropy graph convolution
ReLU ¢ (1
[
l ’

sofmax
/ | ’ 7
.ol)’
/ "

’

Cornell Bowers CIS
Convolutional Layer in CNN

Translation-invariant

1/1/1/0|0
oxo 1x1 1XO 1 0 4
-~ |oj0Q 1 1)1
ojo|1|1(0
0|1|1|0(0
liage Convolved
Feature

Cornell Bowers C1S

Can you perform convolutions on graphs? What would that
look like? Will you run into any problems?

Locality: you can tell a lot
about a particular pixel
based on the properties of

Locality vs Homophily

Homophily: you can tell a
lot about a particular node
based on the properties of

their neighbors their neighbors

Graph Convolutions

Hidden ayer Hiddn layer

g T i <. ot

Image Convolutions

RelU | ¢ ReLU

Generate next layer
embedding vectors for each
node in an input graph by
aggregating the
transformed feature
vectors of each of the
node’s neighbors

Generate next layer
embedding vectors for each
pixel in an input image by
aggregating the
transformed feature
vectors of each of the
pixel’s neighbors

Cornell Bowers C1S
Let’s look at a single layer of a graph convolution

Thomas Kipf
PhD @ University of
Amsterdam
Currently: Research
scientist @ Google Brain

TARGET NODE B /i Transform
H'l / hA =0 Z @
, IN(A)|
uweEN(A)
Aggregate

Aggregate

Note: Aggregation function MUST be
permutation-invariant!
- Mean()

e - sumj \
- Max()

Let’s choose
INPUT GRAPH

Mean() for now...

Cornell Bowers C1S
TARGET NODE wp = |00
0.20 . W
z u
Aggregate | w hA -7 |N A)|
ueN(A) We repeat this
process of
I 0.25 transforming
<~ 10.30 and
. = aggregating
W = [8; 82 82] neighboring
zF = {0 50] { embedding
0.60 _— vectors for
— every node in
- the graph
s o) 03 63 6] s s[5 63 08 s ity 0% 0]
0.45 ha=o 3 ! 3 ! 3 e
e [0'50} __=zo([oas 02
INPUT GRAPH egRelu = [0.145 02 0 INPUT GRAPH
Cornell Bowers CIS Cornell Bowers Ci1S (0)
. 1 Ty — hy
Example time! 2
TARGET NODE ap h =) 00s N R Ry L
(].i(;ﬁ 0.60

3. Transform! 0.015][0.06

h© — 0.05 1. Loy — h(()) 0.095| 0.13
V=010l T4 o5 - bo v 5 01 03 05 51| 0:
110 e B — [025 0.045 _ Wo = |01 03 051 0.145 | 0.20

zc he' = o530 006 | (B 0.145 702 04 06 0= |0.195]| 027

75 2 0.245| 0.34

Let’s also give these 0.07 0-20 yg‘g; 041

© _ [0.55
zp hp' = [(

some values...
L(i[J}

4. Define adjacency matrix:

5. Aggregate!

Tp
o _ [0.35 o _ [045 105
hp' = [040] ep he = {0.50 [P

INPUT GRAPH

0.245
0.34
0.435

INPUT GRAPH

Cornell Bowers C1S

You left multiply by D. Compute D" and then think about
why we multiply by D™.

(As a reminder, D is the diagonal matrix where each entry is
a the degree of each vertex)

Cornell Bowers C1IS 0
011100 1'xv*>h57>
101000 — 5 0.10
110011 2. 5 0.20

100000 (©)) r 5 0.30
0010 HO <[00 n »® 9 K w0] = 010
0 i 0.50

5 0.60,

3. Transform!

0.145 . o1 03 05 o
o 0.17 ”“*[u‘z 0.4 u.o} HOWo =
02 0.235

0.3

0.06 5
013 0.165
020 0.2

4
0.41

4. Define adjacency matrix:

0.195 b
0435 06 0.765
{géﬁ] 5. Aggregate! 019 026 033

o, _ | 068 094 12
AHOWo = 10015 0,06 0.075
044 061 0.78
I: :| 0.39 0.54 0.69
0.075 6. Normalize . Pass through non-linearity
300000 0.145 02 0.255
g g 2 g 8 g 0.095 013 0.165((1) :U(D’lAH(“)IVO)
_ 1 5100 017 0235 03
INPUT GRAPH o= (| ¢ of|pan@w, = |07 G255 08 — ReLU(D™"AHO' W)
000020 022 0305 039~ 1€ E Vo
00000 2

0.195 0.27 0.345, -7

Cornell Bowers C1S

This is the only
thing we optimize!

H® = o(

D 'A

H(0) Wo

2. Aggregate

1. Transform

N

rnell Bowers Ctl
Cornell Bowers C1S This is the only

thing we optimize!

Z=D"3ADT:X0

2. Aggregate 1. Transform

This is often the equation you will see for GCNs!

https://anxiv.org/pdfi1609.02907.pdf

Cornell Bowers C1S

GCN > Random Walks

Table 2: Summary of results in terms of classification accuracy (in percent).

HY = o(DAHOW,)

Method Citescer Cora Pubmed NELL Just plug test
- nodes here!
ManiReg (3] 60.1 59.5 70.7 218
SemiEmb 28] 59.6 59.0 711 26.7
LP [32] 453 68.0 63.0 26.5
[DeepWalk (221 43.2 67.2 65.3 55l)
/TICA 8] 69.1 75.1 73.9 231

Planetoid* [29] 64.7(26s) 75.7(13s) 77.2(25s) 61.9 (185s)
[GCN (this paper) _ 70.3 (7s) _ 81.5 (4s) _ 79.0 (38s) _66.0 (48s) |

/ GCN (rand. splits) 67.9+0.5 80.1+£0.5 789+0.7 584+1.7
/
iy X ...s0 for every new/unseen
With ra:df)r‘n walks{hwhrat V\Ile e node that we’re given (e.gin a THIS IS A BIG
op! m;zgg.are et ina _— test set), we have touse SGD ———— REASON WHY WE
" em |e ing ;’ec _°'hst AGAIN to optimize their USE A WEIGHT
emselves, not weignts... embeddings, which is MATRIX!

computationally expensive!

Cornell Bowers C1S

What do we do with Z?

HY = (D7 AHOW,)
= ReLU(D™'AHO W)

Final layer =7
embedding Decoder
matrix
(4
eencode node H e
—) 4 °
-] o
H [
= = b

Depends on the downstream prediction task:

- Feed Zinto a MLP + Softmax decoder for node-level classification/regression
- For graph-level predictions (e.g classifying an entire graph), can
concat/sum/mean all vectors in Z, and then feed this long vector into a MLP
- Just like in CNNs!

Cornell Bowers C1S

Stacking GCN Layers

HY = o(D*AHOW,)

-
- Input to the next layer
. Note: new weight matrix! Weight
S matrices in GNNs are
. layer-specific.

-_

H® = (D *AHO W)

Cornell Bowers C1IS

Stacking GCN Layers

Final GCN update rules:

Node-level update rule:

hL W)
hi}+1 — g u
2 V)

HY = o(DTAHYW)
|

Let’s just keep adding
more layers, right?

Graph-level update rule:

BIG problem!

Cornell Bowers C1S

Stacking GCN Layers

H® = oD *AHVYW)

In order to calculate A's h,? vector, we need to calculate h,
for each u in Neighbors(A)

H? looks at
neighbors’
neighbors’
neighbors, etc...this
becomes MASSIVE
on large graphs

}L((P ¥ 9

} (0) In order to calculate each node u’s hu‘ vector, we need to calculate hu.O for each u”
o in Neighbors(u)
© oW,
1 Ly Wo
i Justto caleulate h,2, hy =0 Z S
| > Weneedtolook at As weniw N@)I
(0) neighbors’ neighbors
h E

Therefore, number of layer in graph neural networks is a very important

INPUT GRAPH hyperparameter!

Cornell Bowers C1S
The over-smoothing problem

Receptive field for Receptive field for Receptive field for Receptive field: the
1-layer GNN 2-layer GNN 3-layer GNN set of all nodes that
9 © Node of interest e © Node of interest ° © Node of interest are used to
S @ Receptive field @y @ Receptive field @ g @ Receptive field calculate an I-th

" © Other nodes " O Other nodes | © Other nodes

layer embedding
vector for a node v

Here, we encounter the over-smoothing problem, where final-layer node embeddings (in 2)
become highly similar.

SE {
Cornell Bowers C1IS \ \ —

GraphSAGE

2 BIG problems with GCNs:

I; 1 11,%
Problem 1: h "' doesn’t aggregate h - =4 Z ﬁ
u€N (v)

Solution 1: Add self-loops!

Now v will additionally
sum their own

embedding vector along

with v’s neighbors!

Jure Leskovec
Postdoc @ Cornell
Currently: Professor @
Stanford
Until very recently: Chief
Scientist @ Pinterest
Created node2vec

Problem 2: Just Mean()? How about the rest?

Solution 2: Make the aggregation function a hyperparameter!

https://arxiv.org/pdf/1706.02216.pdf

Cornell Bowers C1IS

GraphSAGE > GCN

Table 1: Prediction results for the three datasets (micro-averaged F1 scores). Results for unsupervised
and fully supervised GraphSAGE are shown. Analogous trends hold for macro-averaged scores.

Citation Reddit PPI

Name Unsup. F1~ Sup. F1 Unsup. F1 ~ Sup. F1 ~ Unsup. F1 Sup. F1
Random 0.206 0.206 0.043 0.042 0.396 0.396
Raw features 0.575 0.575 0.585 0.585 0.422 0.422
DeepWalk 0.565 0.565 0.324 0.324 — —

DeepWalk + features 0.701 0.701 0.691 0.691 = =

GraphSAGE-GCN 0.742 0.772 0.908 0.930 0.465 0.500
GraphSAGE-mean 0.778 0.820 0.897 0.950 0.486 0.598
GraphSAGE-LSTM 0.788 0.832 0.907 0.954 0.482 0.612
GraphSAGE-pool 0.798 0.839 0.892 0.948 0.502 0.600

Cornell Bowers C1S
Simplifying GCNs

Remember this?

4

Graph-level update rule: H(l+1) :@(l) Wl)

Define: § — D—l " P

Get rid of the
non-linearities!

H! = SHOW,

Why does this
work so well?

The strength of GNNs comes from their ability to

propagate node features, not from non-linearities
https://arxiv.org/pdf/1902.07153.pdf

Cornell Bowers C1S

Write an expression for gt+)

Cornell Bowers C1S

Table 2. Test accuracy (%) averaged over 10 runs on citation net-
works. TWe remove the outliers (accuracy < 75/65/75%) when
calculating their statistics due to high variance.

| Cora | Citeseer | Pubmed

Numbers from literature:

GCN 81.5 70.3 79.0

GAT 83.0£0.7 | 725£0.7 | 79.0£0.3
GLN 81.2+0.1 70.9+0.1 78.9+0.1
AGNN 83.1+£0.1 1701 79.94+0.1
LNet 79.5+£1.8 | 66.2+£1.9 | 783%£0.3

AdaLNet 80.4+ 1.1 68.7£1.0 | 781£0.4
DeepWalk | 70.7+£0.6 | 51.4+0.5 | 76.84+0.6

DGI 823+06 | 71.8+0.7 | 76.8+0.6
Our experiments:

GCN 81.4+04 | 70.9£05 | 79.0+0.4
GAT 83.3+0.7 | 72.6+£0.6 | 785+0.3
FastGCN | 79.84+0.3 | 68.8+0.6 | 77.4+0.3
GIN 77.6+1.1 | 66.1+09 | 77.0+£1.2
LNet 80.2+3.0" | 67.3+£0.5 | 78.3+0.61
AdaLNet | 81.9+1.9' | 70.6£0.8" | 77.8 £ 0.7
DGI 825+0.7 | 71.6+£0.7 | 784£0.7

SGC 81.0£0.0 | 71.9£0.1 | 78940.0

Cornell Bowers C1S
Summary

® |earning on graphs: Classify nodes and entire graphs, predict links or detect
communities and even generate graphs and their embeddings

e Feature Engineering &) Representation Learning @

e Random Walks, DeepWalk + node2vec: word2vec on graphs, embed nearby
nodes on the random walk closer together

e GCN: CNN on graphs, transform + aggregate neighbors. Homophily in GCNs
similar to locality in CNNs.

e Over-smoothing problem: Can’t stack too many layers

