
Deep Learning
Week [06]: [GNNs]

Logistics

● HW2 is due today
○ One extra slip day because of huggingface maintenance 
○ Run the cells in the coding assignment
○ Turn off GPUs after using

● Project Proposal is due March 7
● HW 3 will be released at the end of the week
● We won’t release HW solutions
● Change in office hours

○ Zach’s office hours will be 4-5 on Wednesday’s (instead of 6-7pm)
○ Varsha’s office hours will be 1-2pm Tuesday’s (instead of 9-10am)

What are Graphs?

Knowledge Graph

Graphs are a general language for describing and analyzing entities with 
relations/interactions

Molecule

Graphs = Nodes + Edges

What are Graphs?

Molecule Knowledge Graph



Graph: Directed vs Undirected
How the edges link the nodes allows us to distinguish between undirected graphs 
vs directed graphs

Graph G with 3 nodes

What we will 
focus on now

Undirected

Directed

Examples:
❑ Academic collaborations
❑ Friendships on Facebook

Examples:
❑ Phone Calls
❑ Following on Twitter

Adjacency Matrix - A

A represents the edges in a given graph

Ai,j = 1 if an edge exists between nodes i and j, else 0

D is a diagonal matrix, where each diagonal entry 
represents the degree of each node in a given graph

Di,i = degree(i)

Degree Matrix - D

The cat sat on the mat.

VS.

No spatial locality (unlike grids)

No rank ordering or fixed reference point

GraphML vs NLP vs CV



Why Do We Care About Learning on Graphs?

There are many different settings where we might care about learning on graphs:

● Graph classification
● Node classification
● Link prediction
● Community detection
● Graph embedding
● Graph generation

Cs224w (Jure Leskovec)

Representation Learning > Feature Engineering

Representation Learning + Classifier

 

d-dimensional embedding
Node v

Cs224w (Jure Leskovec)

Map each node to a low-dimensional vector! 



Example Graph mapped into 2 dimensions
Classify Embeddings!

embedding

u

Classification

Brief Review: word2vec

“During the Battle of Endor, the Death Star II’s energy 
shield was destroyed…

“In the third film, Anakin becomes Vader when…”

“Samuel L Jackson portrayed Mace Windu in the 
prequel trilogy…”

List of 
sentences

W W W W W

Can we do this on 
graphs?

(words close in sentences → close in embedding space)

DeepWalk: word2vec For Graphs

This is exactly the same optimization as word2vec, but we instead optimize over 
sequences of random walks on a graph.



DeepWalk selects the next node to traverse to in 
each random walk purely at random (unbiased)

Nodes that are close together in the random walk 
sequence should be embedded closer together 
in the embedding space!

These are the “sentences” that we generate!

Example: node2vec: The Introduction of Bias…

Grover and Leskovec., ACM SIGKDD, 2016

Breadth First Search (BFS) {s1, s2, s3} Local microscopic view

Depth First Search (DFS) {s4, s5, s6} Global macroscopic view

Homophily

Structural equivalence

node2vec = DeepWalk + control over local vs global exploration (via 
two additional hyperparameters that we won’t discuss in detail)

GRAPH NEURAL NETWORKS
Convolutional Layer in CNN

How about for 
non-Euclidean data? 
Can we do 
something similar 
with graphs?

Translation-invariant



Can you perform convolutions on graphs? What would that 
look like? Will you run into any problems?

Locality vs Homophily

Graph ConvolutionsImage Convolutions

Generate next layer 
embedding vectors for each 
pixel in an input image by 
aggregating the 
transformed feature 
vectors of each of the 
pixel’s neighbors

Generate next layer 
embedding vectors for each 
node in an input graph by 
aggregating the 
transformed feature 
vectors of each of the 
node’s neighbors

Locality: you can tell a lot 
about a particular pixel 
based on the properties of 
their neighbors

Homophily: you can tell a 
lot about a particular node 
based on the properties of 
their neighbors

Let’s look at a single layer of a graph convolution

Thomas Kipf
PhD @ University of 

Amsterdam
Currently: Research 

scientist @ Google Brain

Aggregate

Note: Aggregation function MUST be 
permutation-invariant!

- Mean()
- Sum()
- Max()

Aggregate

Transform

Let’s choose 
Mean() for now…



Aggregate

e.g ReLU

We repeat this 
process of 
transforming 
and 
aggregating 
neighboring 
embedding 
vectors for 
every node in 
the graph

Example time!

1.

Let’s also give these 
some values…

Need to 
normalize!

1.

  2. 

  3. Transform!

  4. Define adjacency matrix:

  5. Aggregate!



You left multiply by D-1. Compute D-1 and then think about 
why we multiply by D-1.

(As a reminder, D is the diagonal matrix where each entry is 
a the degree of each vertex)

1.

  2. 

  3. Transform!

  4. Define adjacency matrix:

  5. Aggregate!

  6. Normalize   7. Pass through non-linearity

1. Transform2. Aggregate

This is the only 
thing we optimize!

1. Transform2. Aggregate

This is the only 
thing we optimize!

https://arxiv.org/pdf/1609.02907.pdf

This is often the equation you will see for GCNs!



With random walks, what we’re 
optimizing are the final 

embedding vectors 
themselves, not weights…

…so for every new/unseen 
node that we’re given (e.g in a 
test set), we have to use SGD 

AGAIN to optimize their 
embeddings, which is 

computationally expensive!

THIS IS A BIG 
REASON WHY WE 

USE A WEIGHT 
MATRIX!

GCN > Random Walks

Just plug test 
nodes here!

What do we do with Z?

Decoder
Final layer 

embedding 
matrix

Depends on the downstream prediction task:

- Feed Z into a MLP + Softmax decoder for node-level classification/regression

- For graph-level predictions (e.g classifying an entire graph), can 
concat/sum/mean all vectors in Z, and then feed this long vector into a MLP 

- Just like in CNNs!

Stacking GCN Layers

Input to the next layer
Note: new weight matrix! Weight 
matrices in GNNs are 
layer-specific.

But D and A never change!

Stacking GCN Layers
Final GCN update rules:

Node-level update rule:

Graph-level update rule:

Let’s just keep adding 
more layers, right?

BIG problem!



Stacking GCN Layers
In order to calculate A’s hA

2 vector, we need to calculate hu
1 

for each u in Neighbors(A)

In order to calculate each node u’s hu
1 vector, we need to calculate hu’

0 for each u’ 
in Neighbors(u)

Therefore, number of layer in graph neural networks is a very important 
hyperparameter!

H3 looks at 
neighbors’ 
neighbors’ 

neighbors, etc…this 
becomes MASSIVE 

on large graphs

Just to calculate hA
2, 

we need to look at A’s 
neighbors’ neighbors

The over-smoothing problem

Here, we encounter the over-smoothing problem, where final-layer node embeddings (in Z) 
become highly similar.

Receptive field: the 
set of all nodes that 
are used to 
calculate an l-th 
layer embedding 
vector for a node v

GraphSAGE

Jure Leskovec
Postdoc @ Cornell

Currently: Professor @ 
Stanford

Until very recently: Chief 
Scientist @ Pinterest
Created node2vec

2 BIG problems with GCNs:

Problem 1: hv
L+1 doesn’t aggregate hv

L

Solution 1: Add self-loops! 

Problem 2: Just Mean()? How about the rest?

Solution 2: Make the aggregation function a hyperparameter!

Now v will additionally 
sum their own 

embedding vector along 
with v’s neighbors!

https://arxiv.org/pdf/1706.02216.pdf

GraphSAGE > GCN



Simplifying GCNs

Graph-level update rule:

Remember this?

Get rid of the 
non-linearities!

Define: 

Why does this 
work so well?

The strength of GNNs comes from their ability to 
propagate node features, not from non-linearities

https://arxiv.org/pdf/1902.07153.pdf

Write an expression for 

Summary

● Learning on graphs: Classify nodes and entire graphs, predict links or detect 

communities and even generate graphs and their embeddings

● Feature Engineering 😡 Representation Learning 😊
● Random Walks, DeepWalk + node2vec: word2vec on graphs, embed nearby 

nodes on the random walk closer together

● GCN: CNN on graphs, transform + aggregate neighbors. Homophily in GCNs 

similar to locality in CNNs.

● Over-smoothing problem: Can’t stack too many layers


