
Deep Learning
Week 02: LSTMs/Attention



Big Question: How to model sequences of words?
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RNN w/ parameter-sharing
Use the same parameters across different timesteps.

Hidden State 

Output



Discuss: What types of tasks can you perform with RNNs?

https://www.analyticsvidhya.com/blog/2021/06/time-series-analysis-recurrence-neural-network-in-python/



Sequence Timesteps

● Recurrent forward will rewrite the 
hidden states on every timestep!

○ What will happen? Letʼs discuss!

RNN: Issues under Loooooooong Context



Sequence Timesteps

RNN: Issues under Loooooooong Context

Sequence Timesteps



Backpropagation through the Time (BPTT)

Sequence Timesteps

Layers

● Unfold a recurrent neural 
network in time

● Gradients are accumulated 
across all time steps by 
applying the chain rule

● Propagate gradients 
backwards through time steps



Backpropagation through the Time (BPTT)
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Backpropagation through the Time (BPTT)
Assume we only compute the loss on the last time step
Last time step:
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Output



Backpropagation through the Time (BPTT)
Assume we only compute the loss on the last time step
Last time step:

T-1th time step:
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Output



Backpropagation through the Time (BPTT)
Assume we only compute the loss on the last time step
Last time step:

T-1th time step:

Generalizing and summing over all time steps:

Hidden State 

Output



RNN: Issues under Loooooooong Context

Sequence Timesteps

● Exploding gradients: grad to inf

● Vanishing gradients: grad to 0

Hidden State 

Output



Sequence Timesteps

RNN: Issues under Loooooooong Context

Sequence Timesteps



Long-short Term Memory (LSTM)

● Main idea: add a “cell” state that allows information to flow easily
○ Similar to residual connections
○ No repeated matrix multiplications!

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs- Gates

● Control the flow of information with “gates”
○ Element-wise product with the output of a sigmoid activation

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs- Forget Gate

● Forget gate- function of current input and previous hidden state
● Controls what should be remembered in the cell state

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs- Input Gate

● Input gate- function of current input and previous hidden state
● Decides what information to write to the cell state

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM- Cell Update

● Forget irrelevant information
● Add new information from the current token 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM- Output Gate

● Output gate- function of current input and previous hidden state
● Controls flow of information from the cell state to the hidden state
● Discuss: Given some weight matrix W_o, how could we write the update?

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



RNN vs. LSTM

● RNN
○ Can be applied to 

variable-length sequences
○ Share parameters across time
○ Hard to train!

● LSTM
○ Mitigates the vanishing gradient 

problem with the cell state
○ Better for long sequences

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Sequence-to-Sequence Generation

● Map some input sequence to a target sequence
● Applications:

○ Machine translation
○ News summarization
○ ChatGPT!

https://web.stanford.edu/~jurafsky/slp3/



Discuss: Potential problems with Sequence to Sequence 
Models

https://web.stanford.edu/~jurafsky/slp3/



Attention

● Attention gives the network a way to “look back” at all previous hidden states
○ Introduced to handle long source sentences in neural machine translation (NMT)

https://web.stanford.edu/~jurafsky/slp3/



Attention Mechanism 

Consists of 3 “general” steps:

Step 1: Compute score of each embedding/input

Step 2: Compute attention weights according to 
alignment with outputs (general attention) or inputs 
(self attention)

Step 3: Compute the context vector, scaled according 
to attention weights

https://lilianweng.github.io/posts/2018-06-24-attention/



Attention Mechanism

https://web.stanford.edu/~jurafsky/slp3/



Popular Attention Formulations

● Different score functions have been introduced
○ In practice, the dot-product is simple and effective

https://lilianweng.github.io/posts/2018-06-24-attention/



Attention

● Computes time-dependent weighted averages over previous vectors
● Can focus on different aspects of the past sequence 

https://web.stanford.edu/~jurafsky/slp3/



Visualizing Attention

● Plot attention weights to see where the model is “looking”
○ Learns language alignment for translation!

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua 
Bengio. "Neural machine translation by jointly 
learning to align and translate." 



Impact of Attention

● Really helpful for long sequences
○ Helps solve bottleneck problem!

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua 
Bengio. "Neural machine translation by jointly 
learning to align and translate." 



Attention Application- Image Captioning!

● Extract image features with a CNN
● Use an LSTM with attention to generate image captions

Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with 
visual attention." International conference on machine learning. PMLR, 2015.



Visualize Attention Weights

● Learns to focus on relevant regions of the image

Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with 
visual attention." International conference on machine learning. PMLR, 2015.



Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with 
visual attention." International conference on machine learning. PMLR, 2015.



Error Analysis!

Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with 
visual attention." International conference on machine learning. PMLR, 2015.



Recap

● RNNs can be applied to arbitrary length sequences
○ Run into vanishing/exploding gradient problems

● LSTMs add a cell state to RNNs to improve gradient flow
○ Better a handling long sequences

● Attention can look back at past feature vectors!
○ Scales better to long sequences
○ Can incorporate image features
○ Many, many more applications!


