
Deep Learning
Week 02: LSTMs/Attention



Big Question: How to model sequences of words?



 Recurrent neural network (RNN)

FFN + Hidden States

Word 
embeddings

Output

Hidden
States

Sequence Timesteps



RNN w/ parameter-sharing
Use the same parameters across different timesteps.

Hidden State 

Output



Discuss: What types of tasks can you perform with RNNs?

https://www.analyticsvidhya.com/blog/2021/06/time-series-analysis-recurrence-neural-network-in-python/



Sequence Timesteps

● Recurrent forward will rewrite the 
hidden states on every timestep!

○ What will happen? Letʼs discuss!

RNN: Issues under Loooooooong Context



Sequence Timesteps

RNN: Issues under Loooooooong Context

Sequence Timesteps



Backpropagation through the Time (BPTT)

Sequence Timesteps

Layers

● Unfold a recurrent neural 
network in time

● Gradients are accumulated 
across all time steps by 
applying the chain rule

● Propagate gradients 
backwards through time steps



Backpropagation through the Time (BPTT)

Hidden State 

Output



Backpropagation through the Time (BPTT)
Assume we only compute the loss on the last time step
Last time step:

Hidden State 

Output



Backpropagation through the Time (BPTT)
Assume we only compute the loss on the last time step
Last time step:

T-1th time step:

Hidden State 

Output



Backpropagation through the Time (BPTT)
Assume we only compute the loss on the last time step
Last time step:

T-1th time step:

Generalizing and summing over all time steps:

Hidden State 

Output



RNN: Issues under Loooooooong Context

Sequence Timesteps

● Exploding gradients: grad to inf

● Vanishing gradients: grad to 0

Hidden State 

Output



Sequence Timesteps

RNN: Issues under Loooooooong Context

Sequence Timesteps



Long-short Term Memory (LSTM)

● Main idea: add a “cell” state that allows information to flow easily
○ Similar to residual connections
○ No repeated matrix multiplications!

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs- Gates

● Control the flow of information with “gates”
○ Element-wise product with the output of a sigmoid activation

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs- Forget Gate

● Forget gate- function of current input and previous hidden state
● Controls what should be remembered in the cell state

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs- Input Gate

● Input gate- function of current input and previous hidden state
● Decides what information to write to the cell state

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM- Cell Update

● Forget irrelevant information
● Add new information from the current token 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM- Output Gate

● Output gate- function of current input and previous hidden state
● Controls flow of information from the cell state to the hidden state
● Discuss: Given some weight matrix W_o, how could we write the update?

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



RNN vs. LSTM

● RNN
○ Can be applied to 

variable-length sequences
○ Share parameters across time
○ Hard to train!

● LSTM
○ Mitigates the vanishing gradient 

problem with the cell state
○ Better for long sequences

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Sequence-to-Sequence Generation

● Map some input sequence to a target sequence
● Applications:

○ Machine translation
○ News summarization
○ ChatGPT!

https://web.stanford.edu/~jurafsky/slp3/



Discuss: Potential problems with Sequence to Sequence 
Models

https://web.stanford.edu/~jurafsky/slp3/



Attention

● Attention gives the network a way to “look back” at all previous hidden states
○ Introduced to handle long source sentences in neural machine translation (NMT)

https://web.stanford.edu/~jurafsky/slp3/



Attention Mechanism 

Consists of 3 “general” steps:

Step 1: Compute score of each embedding/input

Step 2: Compute attention weights according to 
alignment with outputs (general attention) or inputs 
(self attention)

Step 3: Compute the context vector, scaled according 
to attention weights

https://lilianweng.github.io/posts/2018-06-24-attention/



Attention Mechanism

https://web.stanford.edu/~jurafsky/slp3/



Popular Attention Formulations

● Different score functions have been introduced
○ In practice, the dot-product is simple and effective

https://lilianweng.github.io/posts/2018-06-24-attention/



Attention

● Computes time-dependent weighted averages over previous vectors
● Can focus on different aspects of the past sequence 

https://web.stanford.edu/~jurafsky/slp3/



Visualizing Attention

● Plot attention weights to see where the model is “looking”
○ Learns language alignment for translation!

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua 
Bengio. "Neural machine translation by jointly 
learning to align and translate." 



Impact of Attention

● Really helpful for long sequences
○ Helps solve bottleneck problem!

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua 
Bengio. "Neural machine translation by jointly 
learning to align and translate." 



Attention Application- Image Captioning!

● Extract image features with a CNN
● Use an LSTM with attention to generate image captions

Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with 
visual attention." International conference on machine learning. PMLR, 2015.



Visualize Attention Weights

● Learns to focus on relevant regions of the image

Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with 
visual attention." International conference on machine learning. PMLR, 2015.



Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with 
visual attention." International conference on machine learning. PMLR, 2015.



Error Analysis!

Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with 
visual attention." International conference on machine learning. PMLR, 2015.



Recap

● RNNs can be applied to arbitrary length sequences
○ Run into vanishing/exploding gradient problems

● LSTMs add a cell state to RNNs to improve gradient flow
○ Better a handling long sequences

● Attention can look back at past feature vectors!
○ Scales better to long sequences
○ Can incorporate image features
○ Many, many more applications!


