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Cornell Bowers C1IS
Review: Convolutional Neural Networks (CNNSs)

Convolutions Maintain spatial relation between pixels
Reduce number of parameters through weight sharing

Pooling Captures key information from across different areas of the feature maps
Together with convolutions allows for translational invariance

BatchNorm Increases speed and stability of training
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Image Classification

e Important: Everything is differentiable!
e Can calculate gradient of the loss with backpropagation
o Train with SGD/Adam/etc.

o Learn convolutional filters and classification head end-to-end!
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Discuss: Padding

e Given a 5x5 feature map and a 3x3 convolution:
o How much padding do | need to maintain the spatial size of the feature map (i.e., 5x5)?

e What about when using a 5x5 convolution?
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Deeper CNN Architectures
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Deeper CNN Architectures
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Deeper CNN Architectures
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Deeper CNN Architectures
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Deeper CNN Architectures
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Deeper == better

Y
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Deeper == better
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ImageNet Classification Challenge: Deeper == better
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[Nguyen, Kien & Fookes, Clinton & Ross, Arun & Sridharan, Sridha. (2017). Iris Recognition with Off-the-Shelf CNN Features: A
Deep Learning Perspective. IEEE Access. PP. 1-1. 10.1109/ACCESS.2017.2784352. |
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Deeper == better?
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56 layer CNN has higher training and test error than 20 layer CNN
on CIFAR-10 dataset for image classification

[He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.]
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Deeper != better

- Long training times

- Vanishing gradient problem
- Recall backpropagation to update weights
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- If each term <<< 1, gradient “vanishes” as the entire multiplication goes towards 0
- =>Weights not updated properly




Cornell Bowers CiIS

GooglLeNet/Inception Net

Goal: given a fixed computational budget, optimize the depth and width of the
network

=> Deeper networks with computational efficiency

[Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.]
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Inception Module

Filter
concatenation
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

Previous layer

Inception module = main
building blocks

[Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.]
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Inception Module

Still expensive!

Filter .
——— - 3x3 and 5x5 convolutions have
\ .
T large number of operations
1x1 convolutions 3x3 convelutions 5x5 convolutions 3x3 max pooling . .
- Output of pooling layer increases

the output channel dimension
e when concatenated

[Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.]
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Slight Detour: 1x1 convolutions
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Slight Detour: 1x1 convolutions
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Slight Detour: 1x1 convolutions
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Slight Detour: 1x1 convolutions
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Slight Detour: 1x1 convolutions

input filters

X

1x1x64
* 32 filters
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Inception Module

Solution: Inception module with dimension reduction

Fitter

3x3 convolutions 55 convolutions 1x1 convolutions

1x1 convolutions I L} [}

\\ 1x1 convolutions 1x1 convolutions 3x3 max pooling

[Szegedy, Christian, et al. "Going deeper with convolutions
and pattern recognition. 2015.]

- “Bottleneck” with 1x1 convolutions
to reduce dimensions

." Proceedings of the IEEE conference on computer vision
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Discuss: Impact of Dimension Reduction

Assume you have an input feature map with 256 dimensions.

Compare the parameter counts from:

1. 3x3 conv with 256 filters

2. 1x1 conv with 64 filters — 3x3 conv with 64 filters — 1x1 conv with 256 filters
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GooglLeNet Architecture

Key idea: stack inception modules together

[Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.]
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GooglLeNet Architecture

Key idea: stack inception modules together
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[Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.]
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The Entire GooglLeNet Architecture

Filter
concatenation
3x3 convalutions: 5x5 convolutions 1x1 convolutions
1x1 convolutions v 4 $
1x1 convolutions 1x1 convolutions 3x3 max pooling

Inception Module

[Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.]
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CNN Architectures

“Plain” CNN GoogLeNet

1x1, 3x3, 5x5
convolutions and
pooling between each
layer




Cornell Bowers CiIS

The Entire GoogleNet Architecture

Very complicated - how exactly did this
architecture solve the problem?

Filter
concatenation

3x3 convolutions 5x5 luti 1x1 convoluti
x1 luti ) L] L)
1x1 convolutions 1x1 convolutions 3x3 max pooling
\ — L | .
Pravious layer

Residual connections

[Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.]
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Aside: Conv Layer Abstraction

! RelLU

Batch Normalization

3x3 convolution Conv Layer
| ReLU !
Batch Normalization Conv Layer

3x3 convolution
X

|
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Residual Connections

aka skip connections - add an identity mapping to the output function

F(x) + x

F(x) (x)

Conv Layer T
Conv Layer

X

Conv Layer (identity) T
Conv Layer

X |

X

“Plain” layers Residual Blocks

[He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.]
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Residual Connections

|ldentity mapping

y = F(x) +x
——P - can propagate features forward
T - only learn difference of feature maps
Conv Layer
X
(identity) T
Conv Layer
X

Residual Blocks

[He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.]
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Residual Connections

y=F(9 + x

— D
T

Conv Layer

X
(identity) T
Conv Layer

X

Residual Blocks

Additive component of identity

- alleviates vanishing gradients
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[He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer

vision and pattern recognition. 2016.]
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Discuss: Spot (and explain) the difference

y = F(x) + X
Filter @
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ResNet

Stack residual blocks together!
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[He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.]
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ResNet

Stack residual blocks together!

block 1 block 2 block 3

[He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.]
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ResNet

Stack residual blocks together!

Sy
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[He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.]
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Full ResNet Architecture

“Plain” Network
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[He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.]
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Deeper == better

Can train deeper models!

5 BASA O M i i i e 8
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to

their plain counterparts.
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Visualizing the Effect of Skip Connections

Makes optimization easier!

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

[Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in neural information processing systems 31 (2018).]
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Stochastic Depth

During training, randomly drop Residual Blocks using skip connections

Like dropout but with residual blocks instead of individual neurons

Sy

block 1 block 4 |—

y

block 2 block 3

A 4

=

A 4

[Huang, Gao, et al. "Deep networks with stochastic depth." Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part IV 14. Springer International Publishing, 2016.]
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Stochastic Depth

During training, randomly drop Residual Blocks using skip connections

Like dropout but with residual blocks instead of individual neurons

block 1 block 3 block 4 —
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[Huang, Gao, et al. "Deep networks with stochastic depth." Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part IV 14. Springer International Publishing, 2016.]
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Stochastic Depth

Another benefit: robustness/mitigating overfitting

block 1 block 3 block 4 |—
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[Huang, Gao, et al. "Deep networks with stochastic depth." Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part IV 14. Springer International Publishing, 2016.]
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Stochastic Depth

Increases training loss, but... decreases test error!

110-layer ResNet on CIFAR-10 110-layer ResNet on CIFAR-100 )
T : T : T r r : 10
Test Error with Constant Depth o Test Error with Constant Depth
Test Error with Stochastic Depth |} 10 45 Tes} !Error with $tochastic Depth
Training Loss with Constant Depth Tra!n!ng Loss W!th Constant_ Depth
151 Training Loss with Stochastic Depth |1 Training Loss with Stochastic Depth
40 410°
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Fig. 3. Test error on CIFAR-10 (left) and CIFAR-100 (right) during training, with
data augmentation, corresponding to results in the first two columns of Table 1.

[Huang, Gao, et al. "Deep networks with stochastic depth." Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part IV 14. Springer International Publishing, 2016.]
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CNN Architectures

ResNet

Skip connections

Add output of previous
layer to next layer
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From ResNets to DenseNets

\
)i

ResNet
x block 1 block 2 block 3 block 4 ——
DenseNet \
block 1 block 2 block 3 block 4 ——

[Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017.]
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Dense Connections

Each layer has access to every other layer
before it, which:

- maximizes information flow
- allows for feature-map reuse
- less parameters to learn

- alleviates vanishing gradient

5 block 1 block 2 block 3 block 4 —

[Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017.]
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Dense Blocks

To create dense connections, dense blocks use the same structure as residual
blocks, but concatenate (denoted by [, ]) inputs instead of simply adding them

D

[ RelLU
weight layer
4

X

Residual Blocks

— .1

[ ReLU

weight layer

|
X

Dense Blocks

[Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern

recognition. 2017.]
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Transition Layers

Each dense block increases the number of dimensions

Maintain size of dimension with 1x1 convolutions and pooling (transition layer)

Dense Block 1

Dense Block 2
Transition Layer

[Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern
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recognition. 2017.]
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DenseNet Architecture

Stack Dense Blocks together with transition layers in between each Dense Block

Transition Layer

Transition Layer
Input
Prediction
Dense Block 1 . Dense Block 2 y Dense Block 3 .
| . @o - >§- @o - >§- @. »g.g' »| “horse”

[Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern

recognition. 2017.]
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CNN Architectures

DenseNet

Dense connections
Concatenate output of

previous layer to next
layer

| [.]

B—

X
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Model Comparison - error rates

Method Depth Params C10 C10+ C100 C100+ SVHN
Network in Network [27] - - 10.41 8.81 35.68 - 2.35
All-CNN [*1] - - 9.08 725 - 33.71 -
Deeply Supervised Net [ 0] - - 9.69 7.97 - 34.57 1.92
Highway Network [ 1] - - - 7.72 - 32.39 -
FractalNet [ 1 7] 21 38.6M 10.18 522 35.34 23.30 2.01
with Dropout/Drop-path 21 38.6M 7.33 4.60 28.20 23.73 1.87
ResNet [1 1] 110 1.7M - 6.61 - - -
ResNet (reported by [17]) 110 1.7M 13.63 6.41 44.74 27.22 2.01
ResNet with Stochastic Depth [ 1 7] 110 1.7M 11.66 5.23 37.80 24.58 1.75
1202 10.2M - 491 - - -
Wide ResNet [41] 16 11.0M - 4.81 - 22.07 -
28 36.5M - 4.17 - 20.50 -
with Dropout 16 2.7M - - - - 1.64
ResNet (pre-activation) [17] 164 1.7M 11.26* 5.46 35.58* 24.33 -
1001 10.2M 10.56* 4.62 3347 2271 -
DenseNel (k = 12) 40 1.0M 7.00 5.24 27.55 24.42 1.79
DenseNet (k = 12) 100 7.0M 577 4.10 23.79 20.20 1.67
DenseNet (k — 24) 100 27.2M 5.83 3.74 23.42 19.25 159
DenseNet-BC (k = 12) 100 0.8M 5.92 4.51 24.15 2227 1.76
DenseNet-BC (k = 24) 250 15.3M 5.19 3.62 19.64 17.60 1.74
DenseNet-BC (k = 10) 190 25.6M - 3.46 - 17.18 -

[Huang, Gao, et al. "Densely connected convolutional networks." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017.]
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Summary of Models

“Plain” CNN Google Net
Simple connection 1x1, 3x3, 5x5
from previous to next convolutions and
layer pooling between each
layer
F(x)
= = =
T = D=
T ]
X

ResNet

Skip connections

Add output of previous
layer to next layer

DenseNet

Dense connections

Concatenate output of
previous layer to next
layer

| [.]

f
B—

X
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Summary

Deep CNNs outperform shallow CNNs

But...
o Harder optimization problem!

Residual (and dense) connections make training easier!
o Can train networks with 100s of layers!

Stochastic depth let’s you train deeper networks faster
o 1000+ layers!

In general...

o Build large networks as stacks of (many!) simple building blocks




