

Cornell Bowers CIS
Logistics

- HW1 has been released
- Due next Thursday (February 15)
- Office hours are listed on the course website
- Homework clarifications are listed as pinned posts under HW1 on Ed
- Post questions on Ed

$$
\begin{array}{l|ll|}
\hline \text { Cornell Bowers CIS } & \begin{array}{l}
\text { Input: Values of } x \text { over a mini-batch: } \mathcal{B}=\left\{x_{1 \ldots m}\right\} ; \\
\text { Parameters to be learned: } \gamma, \beta
\end{array} \\
\text { Output: }\left\{y_{i}=\operatorname{BN}_{\gamma, \beta}\left(x_{i}\right)\right\} \\
\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \quad \text { // mini-batch mean } \\
\text { The Batch } \\
\text { Normalization } \\
\text { Algorithm } & \begin{array}{l}
\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} \quad \text { // mini-batch variance } \\
\widehat{x}_{i} \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}} \\
y_{i} \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)
\end{array} \quad \text { // scale and shift } \\
& \begin{array}{l}
\text { Algorithm 1: Batch Normalizing Transform, applied to } \\
\text { activation } x \text { over a mini-batch. }
\end{array} \\
\hline
\end{array}
$$

Cornell Bowers CIS
Many Kinds of Normalization Layers

Cornell Bowers CIS

Layer Normalization

Cornell Bowers CIS

Instance Normalization

Cornell Bowers ClS
 Discuss!

What is the dimension of the mean when you compute the batch norm of a volume of dimension ($\mathrm{b} \times \mathrm{cxh} \times \mathrm{w}$)?

Cornell Bowers ClS

Normalization Layers

- Normalization layers improve training stability
- Can train with larger learning rates
- Faster training
- A large learning rate acts as an implicit regularizer
- Better generalization

Instance Norm Group Norm

Cornell Bowers CIS

Gradient Clipping

- Exploding gradients result in unstable training
- Optimization is hard when you have very large gradients
- Fixes:
- Clip by value
- Clip by norm

Cornell Bowers CIS
 Image Classification

input image

\qquad "cat"

Cornell Bowers CIS
So far...

- MLPs learn complex decision boundaries
- Optimization algorithms use the gradient of the loss to find network parameters
- Different training strategies like regularization, early stopping and normalization can improve training and generalization

Cornell Bowers ClS

Applications in Medicine

Cornell Bowers CIS

Applications in Autonomous Driving

Cornell Bowers ClS

Why not use a Multi-Layer Perceptron?

Cornell Bowers CIS

Why not use a Multi-Layer Perceptron?

Cornell Bowers ClS

Why not use a Multi-Layer Perceptron?

Cornell Bowers CIS

Convolutional Filters

Cornell Bowers CIS
Convolutional Filters

Cornell Bowers ClS

Convolutional Filters

Cornell Bowers CIS

Convolutional Filters

Cornell Bowers CIS

Convolutional Filters

Cornell Bowers CIS

Convolutional Filters

Cornell Bowers CIS

Convolutional Filters

Cornell Bowers CIS

Convolutional Filters

Cornell Bowers CIS
Convolutional Filters

Cornell Bowers ClS

Convolutional Filters

Cornell Bowers ClS
 Convolutional Filters

Cornell Bowers ClS

Convolutional Filters

Cornell Bowers CIS

Discuss with your Neighbor!

Match the following convolutional filters with the output they produce.

* Aggregates information from local window around pixel
* Translational invariance
* Reduce number of parameters needed to be learned

Cornell Bowers CIS
 Dilated Convolutions

https:/towardsdatascience.com/review-diliated-convolution-semantic--segmentation-9d5a5bd768f

Cornell Bowers CIS

1D and 3D Convolutions
\square \rightarrow \qquad

[^0]
Cornell Bowers ClS
 CNNs - Stride

* Stride controls how many units the filter / the receptive field shift at a time

Cornell Bowers CIS

CNNs - Padding

* Padding adds layers of zeros (or other number) around image border
* The size of the output image shrinks more as the stride becomes larger
* The receptive fields overlap less as the stride becomes larger

Cornell Bowers CIS
 Stacking Convolutions

Cornell Bowers CIS
 Convolution Over Volumes

What if our input image has more than one channel?

Cornell Bowers CIS

Convolution Operation with Multiple Filters

Cornell Bowers CIS

Convolution Operation with Multiple Filters

Cornell Bowers ClS

Convolution Operation with Multiple Filters

Cornell Bowers CIS

Convolution Operation with Multiple Filters

Cornell Bowers CIS

CNN/MLP Equivalence

Differences in a convolution layer

- neurons are connected to a local region
- Weights are shared across multiple parameters

CONV layers can be converted to Fully connected layers and vice versa!

Cornell Bowers CIS

Discuss: Trade-offs between CNNs and MLPs

How would this image change if you used an MLP instead of a 1×1 convolution filter to produce a ($64 \times 64 \times 1$) feature map? Hint: think about parameter counts and feature interactions.

Cornell Bowers CIS

CNN Layer Output Visualization

Cornell Bowers CIS

Convolutional Neural Networks (CNNs)

Cornell Bowers ClS

Ensuring translational invariance
\checkmark Convolutions
Maintain spatial relation between pixels Reduce number of parameters through weight sharing

Cornell Bowers CIS
Max Pooling

Cornell Bowers CIS
 CNNs - Pooling

Cornell Bowers ClS

CNNs - Pooling

Cornell Bowers CIS
 Convolutional Neural Networks (CNNs)

* Down sample feature maps that highlight the most present feature in the patch
* Improve efficiency by reducing computations with downsampling
* Increase receptive field size

Maintain spatial relation between pixels Reduce number of parameters through weight sharing

\checkmark Convolutions

\checkmark Pooling Captures key information from across different areas of the feature maps Together with convolutions allows for translational invariance

input image

Cornell Bowers CIS

Review - Batch Normalization

* Normalize channels to mean 0 and variance 1 across each training batch
* Increases speed of training by enabling the use of larger learning rates
* Improves stability of training

Cornell Bowers CIS

Convolutional Neural Networks (CNNs)

\checkmark Convolutions Maintain spatial relation between pixels

\checkmark Pooling

V BatchNorm Together with convolutions allows for translational invariance

input image

```
```

Cornell Bowers CIS

```
```

Cornell Bowers CIS
Convolutional Neural Networks (CNNs)

```
```

Convolutional Neural Networks (CNNs)

```
```



```
Cornell Bowers CIS
Convolutional Neural Networks (CNNs)
```


Cornell Bowers C.IS

Convolutional Neural Networks (CNNs)

Cornell Bowers CIS

Convolutional Neural Networks (CNNs)

\checkmark Convolutions	Maintain spatial relation between pixels Reduce number of parameters through weight sharing
\checkmark Pooling	Captures key information from across different areas of the feature maps Together with convolutions allows for translational invariance
Increases speed and stability of training	

```
Cornell Bowers ClS
Image Classification
```


Cornell Bowers CIS
 Practical Guide

- Input image dimensions is divisible by 2
- Small conv filters (3×3 or 5×5)
- Zero padding is used to maintain spatial resolution
- Max pooling for downsampling
- Pooling layers have a receptive field of 2 and stride of 2

[^0]: Sttps:///wandb.ailayush-thakur/dl-question-bank/reports/Intuitive-understanding-of-1D-2D-and-3D-convolutions-in-convolutional-neural-networks--Vmildzox0

