

Logistics

- HW1 has been released
 - Due next Thursday (February 15)
- Office hours are listed on the course website
- Homework clarifications are listed as pinned posts under HW1 on Ed
- Post questions on Ed

Cornell Bowers C·IS	Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1m}\}$; Parameters to be learned: γ , β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$	
The Batch Normalization Algorithm	$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$	// mini-batch mean
	$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$	// mini-batch variance
	$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$	// normalize
	$y_i \leftarrow \gamma \widehat{x}_i + eta \equiv \mathrm{BN}_{\gamma,eta}(x_i)$	// scale and shift
	Algorithm 1: Batch Normalizin	g Transform, applied to

Discuss!

What is the dimension of the mean when you compute the batch norm of a volume of dimension (b x c x h x w)?

Cornell Bowers C^IS

Normalization Layers

- Normalization layers improve training stability
- Can train with larger learning rates
 - Faster training
- A large learning rate acts as an implicit regularizer
 - Better generalization

So far...

- MLPs learn complex decision boundaries
- Optimization algorithms use the gradient of the loss to find network parameters \$\vee{x_i^0}\$
- Different training strategies like
 regularization, early stopping and
 (
 normalization can improve training and
 generalization

Correl Bowers CVS Image Classification i put image classification "dog" (classification) (classifi

input image

Cornell Bowers C·IS

Applications in Medicine

 x_i^1

Applications in Autonomous Driving

Discuss with your Neighbor!

Match the following convolutional filters with the output they produce.

-1 -1

1 1 1

-1 0

-1 0 1 -1 0 1

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

Cornell Bowers C^IS

CNNs - Stride

- Stride controls how many units the filter / the receptive field shift at a time
- The size of the output image shrinks more as the stride becomes larger
- The receptive fields overlap less as the stride becomes larger

Cornell Bowers C·IS

CNNs - Padding

- Padding adds layers of zeros (or other number) around image border
- Prevents image shrinking and loss of information from image boundary

Cornell Bowers C·IS

Convolution Over Volumes

What if our input image has more than one channel?

Cornell Bowers C·IS Convolution Operation with Multiple Filters Filter 1 Input 0 = 0 0 4 0 4 x 4 3x3x3 * 4 5 Filter 2 4 7 9 2 = 3 6x6x3 4 x 4 3x3x3

Cornell Bowers C·IS

Convolution Operation with Multiple Filters

CNN/MLP Equivalence

Differences in a convolution layer:

- neurons are connected to a local region
- Weights are shared across multiple parameters

CONV layers can be converted to Fully connected layers and vice versa!

Convolutional Neural Networks (CNNs)

Convolutions

Maintain spatial relation between pixels Reduce number of parameters through weight sharing

Cornell Bowers CNS Ensuring translational invariance

Cornell Bowers C^IS

CNNs - Pooling

- Down sample feature maps that highlight the most present feature in the patch
- Improve efficiency by reducing computations with downsampling
- Increase receptive field size

Cornell Bowers CIS Convolutional Neural Networks (CNNs)		
Convolutions	Maintain spatial relation between pixels Reduce number of parameters through weight sharing	
V Pooling	Captures key information from across different areas of the feature maps Together with convolutions allows for translational invariance	
V BatchNorm	Increases speed and stability of training	
input image	BatchNorm Layer \rightarrow ? \rightarrow "dog"	

Convolutional Neural Networks (CNNs)

Cornell Bowers C·IS

Convolutional Neural Networks (CNNs)

Cornell Bowers C^IS

Practical Guide

- Input image dimensions is divisible by 2
- Small conv filters (3x3 or 5x5)
- Zero padding is used to maintain spatial resolution
- Max pooling for downsampling
- Pooling layers have a receptive field of 2 and stride of 2