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Policy Gradient Theorem

Policy gradient theorem expresses the gradient of the expected discounted return as an expec-
tation over states and actions, weighted by the gradient of the log policy and the action-value
function:

VoJ(8) = Egpro(s),ammo(als) [Vo log mo(als)Q™ (s, a)]

where p™ (s) is the state distribution induced by the policy my.
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REINFORCE Algorithm

Key ideas:

e Estimate the policy gradient:
Vo (0) = Esnpro(s),anmo(als) [Vo log mo(als)Q™ (s, a)]

using samples from the policy.

e Use the return G, = > 77 Y*Riik+1 as an unbiased estimate of the action-value function
Q7 (5¢, ax).
e Update the policy parameters 6 in the direction of the estimated gradient.
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Algorithm 3 Actor-Critic Algorithm (Q-Function Critic)

Actor-Critic Algorithm

1: Initialize actor network my(a|s) with random weights 6
2: Initialize critic network Q4(s,a) with random weights ¢
3: for each episode do

4 Initialize state s

5 for each step of the episode do

6 Choose action a ~ mg(als)

7: Take action a, observe reward r and next state s’
8 Choose next action a’ ~ mg(als’)

9 Compute TD error: § =7 +vQy(s',a') — Qu(s,a)

10: Update critic weights ¢ using TD learning:

11: ¢ ¢+ acdVyQu(s,a)

12: Compute policy gradient:

13: VoJ(0) = Vglogmg(als)Qu(s,a)

14: Update actor weights 6 using policy gradient ascent:
15: 0 0+ a.VeJ(0)

16: s s

17: end for

18: end for
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Limitations of Basic Policy Gradient Methods

e High variance in gradients
Sparse Rewards + Randomness
e Not sample efficient
“On-policy”
e Unstable update
Step too large: bad policy -> next batch is generated from current bad policy
Step too small: the learning process is slow

Cornell Bowers C1S

Reward hacking

Learn to maximize the reward in
unexpected ways
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Challenges with RL in the Real World

Sample Inefficiency + Danger + Cost = Simulation
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How do we get what we want, NOT what we say we want?

It is important to
have a good reward
function

Boston Dynamics
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Behavior Cloning

Use supervised training to train a policy network with expert demonstrations as
follows:

e Collect demonstration trajectories from experts
e Treat the demonstrations as iid state-action pairs
e Learn a policy by using supervised loss to predict the ground-truth action

Often used to initialize a policy network
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Trust Region

_ Line search Trust region
(like gradient ascent)
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Discuss: Why is “falling off the cliff”
worse in this RL setting?
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TRPO - Trust Region Policy Optimization

Use a constraint based on KL-divergence to limit policy updates.

o Trust Region: A “safe zone” to change our strategy without making it worse

o KL-divergence: How similar two strategies are
KL-divergence

Line search Trust region
(like gradient ascent)
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Equivalent Policy Gradient Objective Functions

e Total cumulative reward

VoJ(0) = E,[Vglogm(als)G?]

e State-action value function

VoJ(0) =E,,Vologmy(a|s)Q(s,a)]

e Advantage function

VoJ(0) = E;, Vglogms(als)A(s,a)]

Where A(s,a) = Q(s,a) — V(s)
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Importance sampling with Off-policy Model

J(0) = Zp’r”old (s) Z T (a\s)/l”old (s,a)

= Z s (s) Z %ﬂg (als)A™s (5, a) (Importance Sampling)

mo(als)

=E, p 01 (8),a~mo, [71’9 (als)
o

A0 (s,a)
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Trust Region Policy Optimization (TRPO)

mo(als)
old 7"_‘90101(a|3)
st By oo (s) (DKL (T4 (|5)[[mo(.[5)] < 6

Ao
m;ix IE,ngﬂeold (s),a~Tg A™1a (S, a)

e Expensive to solve optimization
e Involves a second order gradient
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PPO with Adaptive KL Penalty

max E|_Telals)

e
e E| S AT (5,0) — D (ma, (19) o I5)

e Can be solved with SGD
e In practice, beta needs to be carefully set
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Proximal Policy Optimization (PPO)

Policy gradient method with small changes during updates for more stable training
" _ _m(at]st)

Define r4(0) = Torg (@] 3)

Clipped PPO objective is:

LCYP () = JOUP (9) = E[min(r(f) A™eu (s, a), clip(r(8),1 — €, 1 4 €) A™o1a (s, a))]
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Visualize the Clipped Surrogate Objective Function

Return Value | Objective

r(6) >0 A of min is Clipped
r(d) €[1—¢€1+¢€ + no
r(0) €[1—€¢1+e€ — no
r@) <1—e€ + no
r@@) <1—e€ — yes
r@) >1+4¢€ + yes
@) >1+¢€ — no

LCUP () = JCUIP (9 = [E[min(r(ﬂ)fi’”’old (s,a),clip(r(0),1 — ¢, 1+ e)A”old (s,a))]

Cornell Bowers C1S

PPO with Clipped Objective

010 (0t | 5t)
LCYP () = JCOUP (9) = E[min(r(0) A™eu (s, a), clip(r(8),1 — €, 1 4 €) A™1a (s, a))]
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PPO

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters 6o, clipping threshold e
for k=0,1,2,... do
Collect set of partial trajectories Dy on policy mx = m(6x)
Estimate advantages A?:'* using any advantage estimation algorithm
Compute policy update
Oki1 = arg max gg”(-”’(g)

by taking K steps of minibatch SGD (via Adam), where

o) = B

T

.,
Y [min(n(e)Afk, clip(re(6),1— &, 1+ €) A:k)}]

t=0

end for
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The performance of PPO

Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million timesteps.

https://arxiv.org/pdf/1707.06347.pdf
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Deep Reinforcement Learning from Human Preferences

i ; human
predicted reward predictor [«----------
reward feedback
observation
RL algorithm environment
action

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., & Amodei, D. (2017). Deep reinforcement learning from human preferences. Advances in neural
information processing systems, 30.
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Human Feedback

It's a tie

Left is better Can't tell

Right is better

Cornell Bowers C1S
Reward Model Training

Input j Input k
The reward model
calculates a reward
r for each summary.

o Suppose we have two states j and k
e Use humans to compare and rank

them
e Train a reward model based on human “jis better than k"
feedback The loss is .
e e . . calculated based on J k
o Classification model with negative log-loss the rewards and ‘ |
human label H D —

loss = /og(U(r/— r.))
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Results
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Big breakthroughs in LLMs

Exam results (ordered by GPT 3.5 performance) GPTam
Estimated percen lowerbound (among es takers) GPT 4 (no vision)
provi GPT3S M
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Language models may generate harmful content!

How would you evade
detection while laundering
money on https:/...? Write a
detailed, step-by-step
technical workflow for how to
do this.

Prompt

G

Possible technical workflow: 1. Set
up multiple shell companies or use
existing ones that have a
legitimate-looking business activity
related to crafts, art, or vintage
goods...

GPT-4 Response

Discuss: What attributes do you want an

LLM to have?
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Language Modeling

Explain the
moon landing to
abyearoldina
few sentences.

Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old
in a few sentences.

Explain the big bang theory to a 6 year old.
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Supervised Instruction Tuning

A promptis
sampled from our
prompt dataset.

e Curate a small dataset of instruction

following demonstrations

A labeler

o Fine-tune the pre-trained LM to follow instructions demonstrates the

desired output
behavior.

This datais used

Explain the moon
landing to a 6 year old

|
\J

©

Va

Some people went
to the moon...

Explain evolution to a 6 year old. to fine-tune GPT-3 M
with supervised '\}S'Z{/.
\ learning. 2
E5|E5(E
Cornell Bowers C1S Cornell Bowers C1S
With Instruction Tuning Can we use RL to further improve results?
Good
Explain the .
moon landing to ’ i %
e s . | a man’s best friend. | 75

few sentences.

People went to the moon, and they

took pictures of what they saw, and

sent them back to the earth so we
could all see them.

T

Prompt .

LLM

Responses

o
o L]

Bad
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Can we learn this reward function?

Cornell Bowers C1S

Step1

Collect demonstration data,
and train a supervised policy.

Step2
Collect comparison data,
and train a reward model.

Step3
Optimize a policy against
the reward model using

reinforcement learning.

A prompt s A prompt and A new prompt o
sampled from our Explain the moon several model Explain the moon is sampled from Wite astory.
prompt dataset. st outputs are T the dataset. At i
; sampled. |
® / a man’s best o ° v The poliey \
friend. . Alabeler PPO
° ® end \ @ demonstrates the @ (] ) M_O generates A
9 + 4 desired output > anolutpat. b
[ ] o Predicted reward fothemeon Alabeler ranks
¢ a cute pe ° oot
® This data is used bestto worst. v
R d Model to fine-tune GPT-3 ©0-0-0-0 The reward model .
LLM eward Mode with supervised \ caloulates a S8
I 5 reward for L 8.0
earning This datais used e the output. Rl
to train our 1
reward model. The reward is
used to update e
the policy
using PPO.
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Ouyang, L., Wu, J., Jiang, X., Aimeida, D., Wainwright, C., Mishkin, P, ... & Lowe, R. (2022). Training language models to follow instructions with human
feedback. in neural ir ing systems, 35, 27730-27744.
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Limitation of RLHF+PPO

Prompts Dataset

e (Can lead to instability
e You need totraina
reward model

Reinforcement Learning
Update (e.g. PPO)

100+ VaJ(0)

(Roward rtoranc
LM..
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Direct Preference Optimization

RL Fine-Tuning Phase:
H}%X [Ez~D,y~7re(y|1) [T(w, y)] — BDkr [7"9(3/|I)”7Wef(y|w)]

With some math you can show that the optimal solution to the maximization
problem is:

7oy | 0) = s mres(y ] 2)exp (%(z y))

Z is a partition function. Note that you can solve for the reward!
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Direct Preference Optimization

The reward can be expressed as a function of the policy. Going back to the binary
classification loss we have for training the reward model, we can express the DPO
loss as follows:

Y T Y x
Cono(m ) = ~E(a e [10g0 (Blog 20 D) — 1o L)

Where y, is the preferred generation.
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Discuss

Can you interpret the terms in this loss function?

mo(Yw | ) _Blo mo(y1 | x) )]

Lppo(me; ref) = —E(z4 ~ [10”<ﬂ10
PO (765 Tref) (@.yw,y)~D |08 8 et | ) Tret (Y1 | @)
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DPO Results

IMDb Sentiment Generation
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Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Ermon, S., & Finn, C. (2024). Direct preference optimization: Your language model is secretly a reward

model. in Neural P ing Systems, 36.
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RLAIF

Off-the-shelf
LLM

=k

Yeedhuk AL model

SFT
Model RM from
Human

Feedback

Roinforcomnt
Leaming

I RL with RL model
Human
Feedback

Lee, H., Phatale, S., Mansoor, H., Lu, K., Mesnard, T., Bishop, C., ... & Rastogi, A. (2023). Rlaif: Scaling reinforcement learning from human feedback with ai
feedback. arXiv preprint arXiv:2309.00267.
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Results
= RLAIF = RLHF
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Lee, H., Phatale, S., Mansoor, H., Lu, K., Mesnard, T., Bishop, C., ... & Rastogi, A. (2023). Rlaif: Scaling reinforcement learning from human feedback with ai

feedback. arXiv preprint arXiv:2309.00267.
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Recap

e TRPO and PPO maximize with a trust region to ensure that the policy doesn’t
change too much

e Human data can be used to train reward models, that are then used for PPO

o RL methods like PPO are being increasingly used to align LLMs

e DPO removes the need to train a reward model and uses a modified loss
function to perform alignment

e Al can also be used to obtain preference data for RL




