Iy
Cornell Bowers C1S
College of Computing and Information Scie

Deep Learning il

vy

Week [8]: [Deep Q-Learning]

Cornell Bowers C1S
Logistics

o Will release midterm grades by the end of the week

e Releasing a sign-up sheet for final presentation slots later today
o First day of presentations is April 30th

e Announcement will include instructions for the final presentation
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Agent and Environment
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Agent:

Perceives environment.
Makes decisions.
Aims to maximize reward.

Environment:
The external context in which an
agent operates and interacts with
Provides feedback to agent
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Markov Decision Process (MDP)

e MDPs provide a framework for modeling sequential decision-making problems.
e An MDP is defined by a tuple (S, 4,P,R,7):

— &: Set of states representing the environment.

— A: Set of actions the agent can take.

— P: Transition probability function, P(s'|s, a).

— R: Reward function, R(s, a).

— ~: Discount factor, v € [0, 1].
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Q-Table

e In Q-Learning, the Q-function is typically represented using a Q-table.
— A table that stores the estimated Q-values for state-action pairs.
e Q-table has dimensions |S| x |A|, where:
— |S| is the number of states in the state space.
— |A] is the number of actions in the action space.

e The Q-table is initialized with arbitrary values and iteratively updated based on the agent’s
experiences during the learning process.
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Q-Table Example

. U Down | Right Left
e 9 states and 4 actions P <

e Initialize valid (s,a) tuples to Os Bottom Left o - 0 -
Bottom Middle | 0 - 0 0
Bottom Right 0 - - 0
Mid Left 0 0 0 -
Mid Middle 0 0 0 0
Mid Right 0 0 - 0
Top Left - 0 0 -
Top Middle - 0 0 0
Top Right - 0 - 0
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Q-Learning Update Rule

Q(s.0) = R(s,0) +7 D P(s']s,a) max Q"(s, ')

s'eS
e The Q-Learning update rule can be expanded as:

Q(s,a) + Q(s,a) + a [R(s, a) + 'yn;ng(s’,a’) —Q(s, a)]

Qs,0) = (1 - a)Q(s,) +a [R(s, @) + ymax (s, )]

e The update rule adjusts the current Q-value estimate Q(s,a) in the direction of the target
Q-value based on the Bellman error.

— Q-values are gradually improved and converge towards the optimal Q-function.
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Q-Learning Algorithm

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) « Q(S,A) + a[R + ymax, Q(S',a) — Q(S, A)]
S+ 9';
until S is terminal
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e-Greedy Policy

e Simple solution to balance exploration and exploitation: e-greedy policy

e e-greedy policy:

— With probability 1 — €, choose the optimal action according to the learned Q-values.

— With probability €, choose a random action.

e The e-greedy policy ensures that the agent explores the environment while still exploiting the
learned knowledge.

e Despite its simplicity, e-greedy is still widely used in practice and often yields good results.
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How can we use deep learning to improve classical RL techniques?

Q-Learning
Q Table

State-Action Value

—{ Qa-vale

Deep Q-Learning

— Q-Value Action 1
Q-Value Action 2
Q-Value Action n
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Discussion: Which do we prefer?

Deep Q-Learning Deep Q-Learning

Q-Value Action 1
] Q-Value Action2 | [ state Q-Value Action 2
Q-Value Action n
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Play Pacman with DQN

Q(s,a1) =10

7

T Qka)=0 &

_, |peepQNN| — Q(s;a3) =2 [|
T Q(s,a4) =1 =
s

T

s,a5) =1

v s ade Siavals State Representation
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We feed in multiple
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Training DQN Naive Approach

Gradient ste
Agent performs E'ochasiic Gradient

action Descent g,
/
(St7 A, T, St) I:> w
01
Repeat
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Experience Replay

Store Transitions Sample Minibatch Training

(Sla ay, T, 8,1)

Stochastic Gradient

Descent g,
[

(St7 Qt, T't, 32)

(&0 e Efficient use of training data
e Avoid forgetting previous experiences
e Remove correlations
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How do we compute loss?
ly — Q(s,a)lf3

“True” Q value
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Temporal Difference Target

e Consider the Bellman update
Qs,a) < (1 - a)Q(s,0) +  [R(s,0) + ymax Q(s',a')|
a

e When does this converge?

Q(s,0) = R(s,0) + ymax Q(s', )
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Discussion: Why might issues arise with this loss function?

||7“ + ’ymciaXQ(Slv a) o Q(S7 a’) |%

Target Prediction
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Chasing a moving target!

When ()(s, a)changes, so does Y

https://huggingface.collearn/deep-ri-course/en/unit3/deep-g-algorithm
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Chasing a moving target!

When ()(s, a)changes, so does Y
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Solution: Fix the target to stabilize training

a
Ir -+ 7 maxfQ] ) — Q(s.a) 3

e Use a frozen network to compute the target

e Update the frozen network periodically
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Deep Q-learning

e Sampling
o Perform actions and store the observed experience tuples in a replay memory
o Tuples are of the form (s, ay, 1+, S})

e Training
o Select a batch from the replay buffer

o Update neural network based on the batch
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Algorithm 1 Deep Q-Learning with Replay Memory and Target Network
1 Initialize replay memory D to capacity N
2: Initialize action-value function @ with random weights 6
3: Initialize target action-value function Q with weights 6~ =6
4: for episode = 1, M do

5: Initialize state s

6 fort=1,Tdo

7 With probability € select a random action a,

8 otherwise select a, = argmax, Q(s;, a; 0)

9: Execute action a, in simulator and observe reward r; and new state s;41
10: Store transition (sy, a¢, 7y, 8¢41) in D

11 end for

12: Sample random minibatch of transitions (s;, a;,7;,8;41) from D
13: for each transition (s;,a;,7;,5;41) in the minibatch do

1: if episode terminates at step j + 1 then

15: Set y; =75

16: else

1 Set y; = r; +ymaxy Q(s;41,a’;07)

18: end if

19: end for

20:  Perform a gradient descent step on ﬁ 3,(y; — Q(s4, a;36))* with respect to 6
21: - =10+ (1-7)0"
22: end for
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Overestimation in DQN
! .-
y=r+maxQ(s,a;0")

Taking the max of noisy
random variables
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Overestimation Intuition

e There are 300 people with the same weight: 150 pounds
e There is a weight scale that measures with an error of +/- 5
e Suppose someone (who doesn’t know the original weights) and wants to
estimate the max weight
o Method 1:
= sample n people and weigh them to obtain a list of weights XypeeX
= Output max(x,,...,x,)
o Method 2:
m  Weigh each if the n people twice to obtain x1,...,xn and x'1,...,x'n
m  Find i =argmax(x1,....xn) and then output X,
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Overestimation in DQN
y=r+maxQ(s’,a;0")

Taking the max of noisy
random variables

Idea: Use different
networks to select action
& evaluate action
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Double DQN
a* :argmaXQ(s',a;H) Yy = 7“—|—7Q(5/,a*;97)
a
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First network Second network

selects best action evaluates action
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Discuss: What’s the difference between
Fixed Q-Targets & Double DQN?
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Algorithm 2 Double Deep Q-Learning
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights ¢
3: Initialize target action-value function Q with weights 6~ = 0
1 for episode = 1, M do
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Impact of Double DQN

e Double DQN reduces over-estimation

5: Initialize state s, AR A
& fort—1Tdo e Stabilizes training
4 With probability € select a random action a, Alien Space Invaders Time Pilot Zaxxon
s otherwise select a, = arg max, Q(s;, a; 0) - g5 ;
9 Execute action a; in simulator and observe reward r, and new state 41 < 8 DQN estimate
10: Store transition (s, as, s, S¢41) in D E 8 20 6
11: end for 2
) - 28 . < : o 4
12 Sample random minibatch of transitions (s;,a;,7;, ;1) from D e " | ST
13 for each transition (s;,a;,7,5;41) in the minibatch do 2 ¢ 2 "
14: if episode terminates at step j + 1 then § " : ng,m‘ DQN true value
- ; 0 .
152 Set Yi=Tj 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
16: else - - Training steps (in millions)
17: axXar Q(5541,a’;0) n .
i et s = 1yt 7 O(spes Wizard of Wor Asterix
19: end 1l 00 11l AbLA Ak DosbleDaN 6000 bl (A BoubiaHig
20:  end for o 300 " ) .
21:  Perform a gradient descent step on ‘%‘ 3,5 — Q(sj,a;;6))? with respect to 6 S 2000
22: 0= =70+ (1—-7)0" 1000 2000
23 end for RN
Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep 0 . - ) 0 . - ;
reinforcement learning with double g-learning.” Proceedings of the o 50 100 150 200 o 50 100 150 200
AAAAI conference on artificial intelligence. Vol. 30. No. 1. 2016. Training steps (in millions) Training steps (in millions)
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Q Learning Vanilla DQN

Basic reinforcement learning Use ConvNet to represent
algorithm environment

Tabular storage of g-values Neural net for Q-values

Double DQN

Fixes the overestimation
problem by using different
networks to find and evaluate
the best action

Tabular g-learning does not scale well when there a lot of states
Deep g-learning uses a neural networks and is able to handle problems with
large state-action spaces

e |ssues with vanilla deep g-learning:
o Correlation between subsequent time steps
o Moving target
e Vanilla deep g-learning can be further improved by fixing the overestimation

problem and using double deep g-learning




