

Logistics

- Will release midterm grades by the end of the week
- Releasing a sign-up sheet for final presentation slots later today
 - First day of presentations is April 30th
- Announcement will include instructions for the final presentation

Cornell Bowers C·IS

Markov Decision Process (MDP)

- MDPs provide a framework for modeling sequential decision-making problems.
- An MDP is defined by a tuple $\langle S, A, P, \mathcal{R}, \gamma \rangle$:
 - S: Set of states representing the environment.
 - $-\mathcal{A}$: Set of actions the agent can take.
 - \mathcal{P} : Transition probability function, $\mathcal{P}(s'|s, a)$.
 - \mathcal{R} : Reward function, $\mathcal{R}(s, a)$.
 - $\ \gamma:$ Discount factor, $\gamma \in [0,1].$

Cornell Bowers C·IS Q-Table

- In Q-Learning, the Q-function is typically represented using a Q-table.
 - A table that stores the estimated Q-values for state-action pairs.
- Q-table has dimensions $|\mathcal{S}| \times |\mathcal{A}|,$ where:
 - $|\mathcal{S}|$ is the number of states in the state space.
 - $\left|\mathcal{A}\right|$ is the number of actions in the action space.
- The Q-table is initialized with arbitrary values and iteratively updated based on the agent's experiences during the learning process.

Cornell Bowers C·IS

Q-Table Example

- 9 states and 4 actions
- Initialize valid (s,a) tuples to 0s

	Up	Down	Right	Left
Bottom Left	0	-	0	-
Bottom Middle	0	-	0	0
Bottom Right	0	-	-	0
Mid Left	0	0	0	-
Mid Middle	0	0	0	0
Mid Right	0	0	-	0
Top Left	-	0	0	-
Top Middle	-	0	0	0
Top Right	-	0	-	0

Cornell Bowers CIS Q-Learning Update Rule

 $Q^*(s, a) = \mathcal{R}(s, a) + \gamma \sum_{s' \in S} \mathcal{P}(s'|s, a) \max_{a' \in \mathcal{A}} Q^*(s', a')$

• The Q-Learning update rule can be expanded as:

$$\begin{split} & Q(s,a) \leftarrow Q(s,a) + \alpha \left[\mathcal{R}(s,a) + \gamma \max_{a'} Q(s',a') - Q(s,a) \right] \\ & Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[\mathcal{R}(s,a) + \gamma \max_{a'} Q(s',a') \right] \end{split}$$

- The update rule adjusts the current Q-value estimate Q(s,a) in the direction of the target Q-value based on the Bellman error.
 - Q-values are gradually improved and converge towards the optimal Q-function.

Cornell Bowers C·IS

Q-Learning Algorithm

 $\begin{array}{l} \mbox{Initialize } Q(s,a), \forall s \in \mathbb{S}, a \in \mathcal{A}(s), \mbox{ arbitrarily, and } Q(\textit{terminal-state}, \cdot) = 0 \\ \mbox{Repeat (for each episode):} \\ \mbox{ Initialize } S \\ \mbox{Repeat (for each step of episode):} \\ \mbox{ Choose } A \mbox{ from } S \mbox{ using policy derived from } Q \mbox{ (e.g., ε-greedy)} \\ \mbox{ Take action } A, \mbox{ observe } R, S' \\ Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma \max_a Q(S',a) - Q(S,A) \big] \\ S \leftarrow S'; \\ \mbox{ until } S \mbox{ is terminal} \end{array}$

ε-Greedy Policy

- Simple solution to balance exploration and exploitation: ϵ -greedy policy
- $\epsilon\text{-greedy policy:}$
 - With probability 1ϵ , choose the optimal action according to the learned Q-values.
 - With probability $\epsilon,$ choose a random action.
- The $\epsilon\text{-greedy}$ policy ensures that the agent explores the environment while still exploiting the learned knowledge.
- Despite its simplicity, $\epsilon\text{-greedy}$ is still widely used in practice and often yields good results.

Cornell Bowers C·IS

How can we use deep learning to improve classical RL techniques?

How do we compute loss?

 $||y - Q(s, a)||_2^2$ "True" Q value

Cornell Bowers C^IS

Temporal Difference Target

• Consider the Bellman update

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[\mathcal{R}(s,a) + \gamma \max_{a'} Q(s',a') \right]$$

• When does this converge?

$$Q(s,a) = \mathcal{R}(s,a) + \gamma \max_{a'} Q(s',a')$$

Cornell Bowers C·IS

Discussion: Why might issues arise with this loss function?

$$||r + \gamma \max_{a} Q(s', a) - Q(s, a)||_2^2$$
Target Prediction

Cornell Bowers C^IS

Solution: Fix the target to stabilize training

$$||r + \gamma \max_{a} Q(s', a) - Q(s, a)||_{2}^{2}$$

- Use a frozen network to compute the target
- Update the frozen network periodically

Cornell Bowers C·IS

Deep Q-learning

- Sampling
 - Perform actions and store the observed experience tuples in a replay memory
 - \circ Tuples are of the form $(\mathbf{s}_t, a_t, r_t, s_t')$
- Training
 - Select a batch from the replay buffer
 - Update neural network based on the batch

Cornell Bowers C^IS

Algorithm 1 Deep Q-Learning with Replay Memory and Target Network	
 Initialize replay memory D to capacity N 	_
2: Initialize action-value function Q with random weights θ	
3: Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$	
4: for episode = 1, M do	
5: Initialize state s ₁	
6: for $t = 1, T$ do	
7: With probability ϵ select a random action a_t	
8: otherwise select $a_t = \arg \max_a Q(s_t, a; \theta)$	
 Execute action a_t in simulator and observe reward r_t and new state s_{t+1} 	
10: Store transition (s_t, a_t, r_t, s_{t+1}) in D	
11: end for	
 Sample random minibatch of transitions (s_j, a_j, r_j, s_{j+1}) from D 	
13: for each transition (s_j, a_j, r_j, s_{j+1}) in the minibatch do	
14: if episode terminates at step $j + 1$ then	
15: Set $y_j = r_j$	
16: else	
17: Set $y_j = r_j + \gamma \max_{a'} \hat{Q}(s_{j+1}, a'; \theta^-)$	
18: end if	
19: end for	
20: Perform a gradient descent step on $\frac{1}{ B } \sum_{j} (y_j - Q(s_j, a_j; \theta))^2$ with respect to θ	
21: $\theta^- = \tau \theta + (1 - \tau) \theta^-$	
22: end for	

Cornell Bowers C·IS

Overestimation in DQN

$$y = r + \max_{a} Q(s', a; \theta^{-})$$

Taking the max of noisy random variables

Overestimation Intuition

- There are 300 people with the same weight: 150 pounds
- There is a weight scale that measures with an error of +/- 5
- Suppose someone (who doesn't know the original weights) and wants to
 estimate the max weight
 - Method 1:
 - sample n people and weigh them to obtain a list of weights x₁,...,x_n
 - Output max(x₁,...,x_n)
 - Method 2:
 - Weigh each if the n people twice to obtain x1,...,xn and x'1,...,x'n
 - Find i = argmax(x1,...,xn) and then output x'_i

Cornell Bowers CIS

Overestimation in DQN

$$y = r + \max_{a} Q(s', a; \theta^{-})$$

Taking the max of noisy random variables

Idea: Use different networks to select action & evaluate action

Cornell Bowers C·IS

Discuss: What's the difference between Fixed Q-Targets & Double DQN?

ornell Bowers CIS Summary of Models			
Q Learning	Vanilla DQN	Double DQN	
Basic reinforcement learning algorithm	Use ConvNet to represent environment	Fixes the overestimation problem by using different	
Tabular storage of q-values	Neural net for Q-values	the best action	

Review

- Tabular q-learning does not scale well when there a lot of states
- Deep q-learning uses a neural networks and is able to handle problems with large state-action spaces
- Issues with vanilla deep q-learning:
 - $\circ \quad \mbox{Correlation between subsequent time steps}$
 - Moving target
- Vanilla deep q-learning can be further improved by fixing the overestimation problem and using double deep q-learning